haystack/test/test_summarizer_translation.py
Sara Zan d470b9d0bd
Improve dependency management (#1994)
* Fist attempt at using setup.cfg for dependency management

* Trying the new package on the CI and in Docker too

* Add composite extras_require

* Add the safe_import function for document store imports and add some try-catch statements on rest_api and ui imports

* Fix bug on class import and rephrase error message

* Introduce typing for optional modules and add type: ignore in sparse.py

* Include importlib_metadata backport for py3.7

* Add colab group to extra_requires

* Fix pillow version

* Fix grpcio

* Separate out the crawler as another extra

* Make paths relative in rest_api and ui

* Update the test matrix in the CI

* Add try catch statements around the optional imports too to account for direct imports

* Never mix direct deps with self-references and add ES deps to the base install

* Refactor several paths in tests to make them insensitive to the execution path

* Include tstadel review and re-introduce Milvus1 in the tests suite, to fix

* Wrap pdf conversion utils into safe_import

* Update some tutorials and rever Milvus1 as default for now, see #2067

* Fix mypy config


Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2022-01-26 18:12:55 +01:00

43 lines
1.6 KiB
Python

import pytest
from haystack.pipelines import TranslationWrapperPipeline, SearchSummarizationPipeline
from haystack.nodes import DensePassageRetriever, EmbeddingRetriever
from test_summarizer import SPLIT_DOCS
# Keeping few (retriever,document_store) combination to reduce test time
@pytest.mark.slow
@pytest.mark.elasticsearch
@pytest.mark.summarizer
@pytest.mark.parametrize(
"retriever,document_store",
[("embedding", "memory"), ("elasticsearch", "elasticsearch")],
indirect=True,
)
def test_summarization_pipeline_with_translator(
document_store,
retriever,
summarizer,
en_to_de_translator,
de_to_en_translator
):
document_store.write_documents(SPLIT_DOCS)
if isinstance(retriever, EmbeddingRetriever) or isinstance(retriever, DensePassageRetriever):
document_store.update_embeddings(retriever=retriever)
query = "Wo steht der Eiffelturm?"
base_pipeline = SearchSummarizationPipeline(retriever=retriever, summarizer=summarizer)
pipeline = TranslationWrapperPipeline(
input_translator=de_to_en_translator,
output_translator=en_to_de_translator,
pipeline=base_pipeline
)
output = pipeline.run(query=query, params={"Retriever": {"top_k": 2}, "Summarizer": {"generate_single_summary": True}})
# SearchSummarizationPipeline return answers but Summarizer return documents
documents = output["documents"]
assert len(documents) == 1
assert documents[0].content in [
"Der Eiffelturm ist ein Wahrzeichen in Paris, Frankreich.",
"Der Eiffelturm, der 1889 in Paris, Frankreich, erbaut wurde, ist das höchste freistehende Bauwerk der Welt."
]