mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-23 17:00:41 +00:00

* Files moved, imports all broken * Fix most imports and docstrings into * Fix the paths to the modules in the API docs * Add latest docstring and tutorial changes * Add a few pipelines that were lost in the inports * Fix a bunch of mypy warnings * Add latest docstring and tutorial changes * Create a file_classifier module * Add docs for file_classifier * Fixed most circular imports, now the REST API can start * Add latest docstring and tutorial changes * Tackling more mypy issues * Reintroduce from FARM and fix last mypy issues hopefully * Re-enable old-style imports * Fix some more import from the top-level package in an attempt to sort out circular imports * Fix some imports in tests to new-style to prevent failed class equalities from breaking tests * Change document_store into document_stores * Update imports in tutorials * Add latest docstring and tutorial changes * Probably fixes summarizer tests * Improve the old-style import allowing module imports (should work) * Try to fix the docs * Remove dedicated KnowledgeGraph page from autodocs * Remove dedicated GraphRetriever page from autodocs * Fix generate_docstrings.sh with an updated list of yaml files to look for * Fix some more modules in the docs * Fix the document stores docs too * Fix a small issue on Tutorial14 * Add latest docstring and tutorial changes * Add deprecation warning to old-style imports * Remove stray folder and import Dict into dense.py * Change import path for MLFlowLogger * Add old loggers path to the import path aliases * Fix debug output of convert_ipynb.py * Fix circular import on BaseRetriever * Missed one merge block * re-run tutorial 5 * Fix imports in tutorial 5 * Re-enable squad_to_dpr CLI from the root package and move get_batches_from_generator into document_stores.base * Add latest docstring and tutorial changes * Fix typo in utils __init__ * Fix a few more imports * Fix benchmarks too * New-style imports in test_knowledge_graph * Rollback setup.py * Rollback squad_to_dpr too Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
198 lines
7.8 KiB
Python
198 lines
7.8 KiB
Python
import os
|
|
from subprocess import Popen, PIPE, STDOUT
|
|
from haystack.utils import fetch_archive_from_http, convert_files_to_dicts, clean_wiki_text, launch_es, print_answers
|
|
from haystack.pipelines import Pipeline, RootNode
|
|
from haystack.document_stores import ElasticsearchDocumentStore
|
|
from haystack.nodes import ElasticsearchRetriever, DensePassageRetriever, FARMReader, TransformersQueryClassifier, SklearnQueryClassifier
|
|
|
|
|
|
def tutorial14_query_classifier():
|
|
|
|
#Download and prepare data - 517 Wikipedia articles for Game of Thrones
|
|
doc_dir = "data/article_txt_got"
|
|
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip"
|
|
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
|
|
|
|
# convert files to dicts containing documents that can be indexed to our datastore
|
|
got_dicts = convert_files_to_dicts(
|
|
dir_path=doc_dir,
|
|
clean_func=clean_wiki_text,
|
|
split_paragraphs=True
|
|
)
|
|
|
|
# Initialize DocumentStore and index documents
|
|
launch_es()
|
|
document_store = ElasticsearchDocumentStore()
|
|
document_store.delete_documents()
|
|
document_store.write_documents(got_dicts)
|
|
|
|
# Initialize Sparse retriever
|
|
es_retriever = ElasticsearchRetriever(document_store=document_store)
|
|
|
|
# Initialize dense retriever
|
|
dpr_retriever = DensePassageRetriever(document_store)
|
|
document_store.update_embeddings(dpr_retriever, update_existing_embeddings=False)
|
|
|
|
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
|
|
|
|
|
|
# Here we build the pipeline
|
|
sklearn_keyword_classifier = Pipeline()
|
|
sklearn_keyword_classifier.add_node(component=SklearnQueryClassifier(), name="QueryClassifier", inputs=["Query"])
|
|
sklearn_keyword_classifier.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
|
|
sklearn_keyword_classifier.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"])
|
|
sklearn_keyword_classifier.add_node(component=reader, name="QAReader", inputs=["ESRetriever", "DPRRetriever"])
|
|
sklearn_keyword_classifier.draw("pipeline_classifier.png")
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_1 = sklearn_keyword_classifier.run(
|
|
query="Who is the father of Arya Stark?",
|
|
)
|
|
print("DPR Results" + "\n" + "="*15)
|
|
print_answers(res_1)
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_2 = sklearn_keyword_classifier.run(
|
|
query="arya stark father",
|
|
)
|
|
print("ES Results" + "\n" + "="*15)
|
|
print_answers(res_2)
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_3 = sklearn_keyword_classifier.run(
|
|
query="which country was jon snow filmed ?",
|
|
)
|
|
print("DPR Results" + "\n" + "="*15)
|
|
print_answers(res_3)
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_4 = sklearn_keyword_classifier.run(
|
|
query="jon snow country",
|
|
)
|
|
print("ES Results" + "\n" + "="*15)
|
|
print_answers(res_4)
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_5 = sklearn_keyword_classifier.run(
|
|
query="who are the younger brothers of arya stark ?",
|
|
)
|
|
print("DPR Results" + "\n" + "="*15)
|
|
print_answers(res_5)
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_6 = sklearn_keyword_classifier.run(
|
|
query="arya stark younger brothers",
|
|
)
|
|
print("ES Results" + "\n" + "="*15)
|
|
print_answers(res_6)
|
|
|
|
# Here we build the pipeline
|
|
transformer_keyword_classifier = Pipeline()
|
|
transformer_keyword_classifier.add_node(component=TransformersQueryClassifier(), name="QueryClassifier", inputs=["Query"])
|
|
transformer_keyword_classifier.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
|
|
transformer_keyword_classifier.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"])
|
|
transformer_keyword_classifier.add_node(component=reader, name="QAReader", inputs=["ESRetriever", "DPRRetriever"])
|
|
transformer_keyword_classifier.draw("pipeline_classifier.png")
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_1 = transformer_keyword_classifier.run(
|
|
query="Who is the father of Arya Stark?",
|
|
)
|
|
print("DPR Results" + "\n" + "="*15)
|
|
print_answers(res_1)
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_2 = transformer_keyword_classifier.run(
|
|
query="arya stark father",
|
|
)
|
|
print("ES Results" + "\n" + "="*15)
|
|
print_answers(res_2)
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_3 = transformer_keyword_classifier.run(
|
|
query="which country was jon snow filmed ?",
|
|
)
|
|
print("DPR Results" + "\n" + "="*15)
|
|
print_answers(res_3)
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_4 = transformer_keyword_classifier.run(
|
|
query="jon snow country",
|
|
)
|
|
print("ES Results" + "\n" + "="*15)
|
|
print_answers(res_4)
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_5 = transformer_keyword_classifier.run(
|
|
query="who are the younger brothers of arya stark ?",
|
|
)
|
|
print("DPR Results" + "\n" + "="*15)
|
|
print_answers(res_5)
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_6 = transformer_keyword_classifier.run(
|
|
query="arya stark younger brothers",
|
|
)
|
|
print("ES Results" + "\n" + "="*15)
|
|
print_answers(res_6)
|
|
|
|
# Here we build the pipeline
|
|
transformer_question_classifier = Pipeline()
|
|
transformer_question_classifier.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["Query"])
|
|
transformer_question_classifier.add_node(component=TransformersQueryClassifier(model_name_or_path="shahrukhx01/question-vs-statement-classifier"), name="QueryClassifier", inputs=["DPRRetriever"])
|
|
transformer_question_classifier.add_node(component=reader, name="QAReader", inputs=["QueryClassifier.output_1"])
|
|
transformer_question_classifier.draw("question_classifier.png")
|
|
|
|
# Run only the QA reader on the question query
|
|
res_1 = transformer_question_classifier.run(
|
|
query="Who is the father of Arya Stark?",
|
|
)
|
|
print("DPR Results" + "\n" + "="*15)
|
|
print_answers(res_1)
|
|
|
|
# Show only DPR results
|
|
res_2 = transformer_question_classifier.run(
|
|
query="Arya Stark was the daughter of a Lord.",
|
|
)
|
|
print("ES Results" + "\n" + "="*15)
|
|
res_2
|
|
|
|
# Here we create the keyword vs question/statement query classifier
|
|
|
|
queries = ["arya stark father","jon snow country",
|
|
"who is the father of arya stark","which country was jon snow filmed?"]
|
|
|
|
keyword_classifier = TransformersQueryClassifier()
|
|
|
|
for query in queries:
|
|
result = keyword_classifier.run(query=query)
|
|
if result[1] == "output_1":
|
|
category = "question/statement"
|
|
else:
|
|
category = "keyword"
|
|
|
|
print(f"Query: {query}, raw_output: {result}, class: {category}")
|
|
|
|
# Here we create the question vs statement query classifier
|
|
|
|
queries = ["Lord Eddard was the father of Arya Stark.","Jon Snow was filmed in United Kingdom.",
|
|
"who is the father of arya stark?","Which country was jon snow filmed in?"]
|
|
|
|
question_classifier = TransformersQueryClassifier(model_name_or_path="shahrukhx01/question-vs-statement-classifier")
|
|
|
|
for query in queries:
|
|
result = question_classifier.run(query=query)
|
|
if result[1] == "output_1":
|
|
category = "question"
|
|
else:
|
|
category = "statement"
|
|
|
|
print(f"Query: {query}, raw_output: {result}, class: {category}")
|
|
|
|
if __name__ == "__main__":
|
|
tutorial14_query_classifier()
|
|
|
|
# This Haystack script was made with love by deepset in Berlin, Germany
|
|
# Haystack: https://github.com/deepset-ai/haystack
|
|
# deepset: https://deepset.ai/
|