mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-24 09:20:13 +00:00

* Update openai python client * Add release note * Consolidate multiple mock_chat_completion into one * Ensure all components have api_base_url, organization params * Update tests * Enable function calling * Oversight * Minor fixes, add streaming test mocks * Apply suggestions from code review Co-authored-by: Daria Fokina <daria.fokina@deepset.ai> * metadata -> meta --------- Co-authored-by: Massimiliano Pippi <mpippi@gmail.com> Co-authored-by: Daria Fokina <daria.fokina@deepset.ai>
27 lines
947 B
Python
27 lines
947 B
Python
import pytest
|
|
|
|
from haystack.dataclasses import Answer
|
|
from haystack.document_stores import InMemoryDocumentStore
|
|
from haystack.pipeline_utils.rag import build_rag_pipeline
|
|
from haystack.testing.factory import document_store_class
|
|
|
|
|
|
@pytest.mark.integration
|
|
def test_rag_pipeline(mock_chat_completion):
|
|
rag_pipe = build_rag_pipeline(document_store=InMemoryDocumentStore())
|
|
answer = rag_pipe.run(query="question")
|
|
assert isinstance(answer, Answer)
|
|
|
|
|
|
def test_rag_pipeline_other_docstore():
|
|
FakeStore = document_store_class("FakeStore")
|
|
with pytest.raises(ValueError, match="InMemoryDocumentStore"):
|
|
assert build_rag_pipeline(document_store=FakeStore())
|
|
|
|
|
|
def test_rag_pipeline_embedder_exist_if_model_is_given():
|
|
rag_pipe = build_rag_pipeline(
|
|
document_store=InMemoryDocumentStore(), embedding_model="sentence-transformers/all-mpnet-base-v2"
|
|
)
|
|
assert "text_embedder" in rag_pipe.pipeline.graph.nodes
|