haystack/test/test_weaviate.py
Sara Zan a59bca3661
Apply black formatting (#2115)
* Testing black on ui/

* Applying black on docstores

* Add latest docstring and tutorial changes

* Create a single GH action for Black and docs to reduce commit noise to the minimum, slightly refactor the OpenAPI action too

* Remove comments

* Relax constraints on pydoc-markdown

* Split temporary black from the docs. Pydoc-markdown was obsolete and needs a separate PR to upgrade

* Fix a couple of bugs

* Add a type: ignore that was missing somehow

* Give path to black

* Apply Black

* Apply Black

* Relocate a couple of type: ignore

* Update documentation

* Make Linux CI run after applying Black

* Triggering Black

* Apply Black

* Remove dependency, does not work well

* Remove manually double trailing commas

* Update documentation

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2022-02-03 13:43:18 +01:00

108 lines
3.8 KiB
Python

import numpy as np
import pytest
from haystack.schema import Document
from conftest import get_document_store
import uuid
embedding_dim = 768
def get_uuid():
return str(uuid.uuid4())
DOCUMENTS = [
{"content": "text1", "id": "not a correct uuid", "key": "a"},
{"content": "text2", "id": get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)},
{"content": "text3", "id": get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)},
{"content": "text4", "id": get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)},
{"content": "text5", "id": get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)},
]
DOCUMENTS_XS = [
# current "dict" format for a document
{
"content": "My name is Carla and I live in Berlin",
"id": get_uuid(),
"meta": {"metafield": "test1", "name": "filename1"},
"embedding": np.random.rand(embedding_dim).astype(np.float32),
},
# meta_field at the top level for backward compatibility
{
"content": "My name is Paul and I live in New York",
"id": get_uuid(),
"metafield": "test2",
"name": "filename2",
"embedding": np.random.rand(embedding_dim).astype(np.float32),
},
# Document object for a doc
Document(
content="My name is Christelle and I live in Paris",
id=get_uuid(),
meta={"metafield": "test3", "name": "filename3"},
embedding=np.random.rand(embedding_dim).astype(np.float32),
),
]
@pytest.fixture(params=["weaviate"])
def document_store_with_docs(request, tmp_path):
document_store = get_document_store(request.param, tmp_path=tmp_path)
document_store.write_documents(DOCUMENTS_XS)
yield document_store
document_store.delete_documents()
@pytest.fixture(params=["weaviate"])
def document_store(request, tmp_path):
document_store = get_document_store(request.param, tmp_path=tmp_path)
yield document_store
document_store.delete_documents()
@pytest.mark.weaviate
@pytest.mark.parametrize("document_store", ["weaviate"], indirect=True)
@pytest.mark.parametrize("batch_size", [2])
def test_weaviate_write_docs(document_store, batch_size):
# Write in small batches
for i in range(0, len(DOCUMENTS), batch_size):
document_store.write_documents(DOCUMENTS[i : i + batch_size])
documents_indexed = document_store.get_all_documents()
assert len(documents_indexed) == len(DOCUMENTS)
documents_indexed = document_store.get_all_documents(batch_size=batch_size)
assert len(documents_indexed) == len(DOCUMENTS)
@pytest.mark.weaviate
@pytest.mark.parametrize("document_store_with_docs", ["weaviate"], indirect=True)
def test_query_by_embedding(document_store_with_docs):
docs = document_store_with_docs.query_by_embedding(np.random.rand(embedding_dim).astype(np.float32))
assert len(docs) == 3
docs = document_store_with_docs.query_by_embedding(np.random.rand(embedding_dim).astype(np.float32), top_k=1)
assert len(docs) == 1
docs = document_store_with_docs.query_by_embedding(
np.random.rand(embedding_dim).astype(np.float32), filters={"name": ["filename2"]}
)
assert len(docs) == 1
@pytest.mark.weaviate
@pytest.mark.parametrize("document_store_with_docs", ["weaviate"], indirect=True)
def test_query(document_store_with_docs):
query_text = "My name is Carla and I live in Berlin"
with pytest.raises(Exception):
docs = document_store_with_docs.query(query_text)
docs = document_store_with_docs.query(filters={"name": ["filename2"]})
assert len(docs) == 1
docs = document_store_with_docs.query(filters={"content": [query_text.lower()]})
assert len(docs) == 1
docs = document_store_with_docs.query(filters={"content": ["live"]})
assert len(docs) == 3