haystack/docs/_src/api/api/ranker.md
Daniel Bichuetti e1f399284f
refactor: update dependencies and remove pins (#3147)
* refactor: remove azure-core, pydoc and hf-hub pins

* fix: remove extra-comma

* fix: force minimum version of azure forms recognizer

* refactor: allow newer ocr libs

* refactor: update more dependencies and container versions

* refactor: remove extra comment

* docs: pre-commit manual run

* refactor: remove unnecessary dependency

* tests: update weaviate container image version
2022-09-05 14:30:35 +02:00

198 lines
7.4 KiB
Markdown

<a id="base"></a>
# Module base
<a id="base.BaseRanker"></a>
## BaseRanker
```python
class BaseRanker(BaseComponent)
```
<a id="base.BaseRanker.timing"></a>
#### BaseRanker.timing
```python
def timing(fn, attr_name)
```
Wrapper method used to time functions.
<a id="base.BaseRanker.eval"></a>
#### BaseRanker.eval
```python
def eval(label_index: str = "label",
doc_index: str = "eval_document",
label_origin: str = "gold_label",
top_k: int = 10,
open_domain: bool = False,
return_preds: bool = False) -> dict
```
Performs evaluation of the Ranker.
Ranker is evaluated in the same way as a Retriever based on whether it finds the correct document given the query string and at which
position in the ranking of documents the correct document is.
| Returns a dict containing the following metrics:
- "recall": Proportion of questions for which correct document is among retrieved documents
- "mrr": Mean of reciprocal rank. Rewards retrievers that give relevant documents a higher rank.
Only considers the highest ranked relevant document.
- "map": Mean of average precision for each question. Rewards retrievers that give relevant
documents a higher rank. Considers all retrieved relevant documents. If ``open_domain=True``,
average precision is normalized by the number of retrieved relevant documents per query.
If ``open_domain=False``, average precision is normalized by the number of all relevant documents
per query.
**Arguments**:
- `label_index`: Index/Table in DocumentStore where labeled questions are stored
- `doc_index`: Index/Table in DocumentStore where documents that are used for evaluation are stored
- `top_k`: How many documents to return per query
- `open_domain`: If ``True``, retrieval will be evaluated by checking if the answer string to a question is
contained in the retrieved docs (common approach in open-domain QA).
If ``False``, retrieval uses a stricter evaluation that checks if the retrieved document ids
are within ids explicitly stated in the labels.
- `return_preds`: Whether to add predictions in the returned dictionary. If True, the returned dictionary
contains the keys "predictions" and "metrics".
<a id="sentence_transformers"></a>
# Module sentence\_transformers
<a id="sentence_transformers.SentenceTransformersRanker"></a>
## SentenceTransformersRanker
```python
class SentenceTransformersRanker(BaseRanker)
```
Sentence Transformer based pre-trained Cross-Encoder model for Document Re-ranking (https://huggingface.co/cross-encoder).
Re-Ranking can be used on top of a retriever to boost the performance for document search. This is particularly useful if the retriever has a high recall but is bad in sorting the documents by relevance.
SentenceTransformerRanker handles Cross-Encoder models
- use a single logit as similarity score e.g. cross-encoder/ms-marco-MiniLM-L-12-v2
- use two output logits (no_answer, has_answer) e.g. deepset/gbert-base-germandpr-reranking
https://www.sbert.net/docs/pretrained-models/ce-msmarco.html#usage-with-transformers
| With a SentenceTransformersRanker, you can:
- directly get predictions via predict()
Usage example:
```python
| retriever = BM25Retriever(document_store=document_store)
| ranker = SentenceTransformersRanker(model_name_or_path="cross-encoder/ms-marco-MiniLM-L-12-v2")
| p = Pipeline()
| p.add_node(component=retriever, name="ESRetriever", inputs=["Query"])
| p.add_node(component=ranker, name="Ranker", inputs=["ESRetriever"])
```
<a id="sentence_transformers.SentenceTransformersRanker.__init__"></a>
#### SentenceTransformersRanker.\_\_init\_\_
```python
def __init__(model_name_or_path: Union[str, Path],
model_version: Optional[str] = None,
top_k: int = 10,
use_gpu: bool = True,
devices: Optional[List[Union[str, torch.device]]] = None,
batch_size: int = 16,
scale_score: bool = True,
progress_bar: bool = True,
use_auth_token: Optional[Union[str, bool]] = None)
```
**Arguments**:
- `model_name_or_path`: Directory of a saved model or the name of a public model e.g.
'cross-encoder/ms-marco-MiniLM-L-12-v2'.
See https://huggingface.co/cross-encoder for full list of available models
- `model_version`: The version of model to use from the HuggingFace model hub. Can be tag name, branch name, or commit hash.
- `top_k`: The maximum number of documents to return
- `use_gpu`: Whether to use all available GPUs or the CPU. Falls back on CPU if no GPU is available.
- `batch_size`: Number of documents to process at a time.
- `scale_score`: The raw predictions will be transformed using a Sigmoid activation function in case the model
only predicts a single label. For multi-label predictions, no scaling is applied. Set this
to False if you do not want any scaling of the raw predictions.
- `progress_bar`: Whether to show a progress bar while processing the documents.
- `use_auth_token`: The API token used to download private models from Huggingface.
If this parameter is set to `True`, then the token generated when running
`transformers-cli login` (stored in ~/.huggingface) will be used.
Additional information can be found here
https://huggingface.co/transformers/main_classes/model.html#transformers.PreTrainedModel.from_pretrained
- `devices`: List of torch devices (e.g. cuda, cpu, mps) to limit inference to specific devices.
A list containing torch device objects and/or strings is supported (For example
[torch.device('cuda:0'), "mps", "cuda:1"]). When specifying `use_gpu=False` the devices
parameter is not used and a single cpu device is used for inference.
<a id="sentence_transformers.SentenceTransformersRanker.predict"></a>
#### SentenceTransformersRanker.predict
```python
def predict(query: str,
documents: List[Document],
top_k: Optional[int] = None) -> List[Document]
```
Use loaded ranker model to re-rank the supplied list of Document.
Returns list of Document sorted by (desc.) similarity with the query.
**Arguments**:
- `query`: Query string
- `documents`: List of Document to be re-ranked
- `top_k`: The maximum number of documents to return
**Returns**:
List of Document
<a id="sentence_transformers.SentenceTransformersRanker.predict_batch"></a>
#### SentenceTransformersRanker.predict\_batch
```python
def predict_batch(
queries: List[str],
documents: Union[List[Document], List[List[Document]]],
top_k: Optional[int] = None,
batch_size: Optional[int] = None
) -> Union[List[Document], List[List[Document]]]
```
Use loaded ranker model to re-rank the supplied lists of Documents.
Returns lists of Documents sorted by (desc.) similarity with the corresponding queries.
- If you provide a list containing a single query...
- ... and a single list of Documents, the single list of Documents will be re-ranked based on the
supplied query.
- ... and a list of lists of Documents, each list of Documents will be re-ranked individually based on the
supplied query.
- If you provide a list of multiple queries...
- ... you need to provide a list of lists of Documents. Each list of Documents will be re-ranked based on
its corresponding query.
**Arguments**:
- `queries`: Single query string or list of queries
- `documents`: Single list of Documents or list of lists of Documents to be reranked.
- `top_k`: The maximum number of documents to return per Document list.
- `batch_size`: Number of Documents to process at a time.