bogdankostic ee2745bad8
ci: Add Github workflow to automate benchmark runs (#5399)
* Add config files

* log benchmarks to stdout

* Add top-k and batch size to configs

* Add batch size to configs

* fix: don't download files if they already exist

* Add batch size to configs

* refine script

* Remove configs using 1m docs

* update run script

* update run script

* update run script

* datadog integration

* remove out folder

* gitignore benchmarks output

* test: send benchmarks to datadog

* remove uncommented lines in script

* feat: take branch/tag argument for benchmark setup script

* fix: run.sh should ignore errors

* Add GH workflow to run benchmarks periodically

* Remove unused script

* Adapt cml.yml

* Adapt cml.yml

* Rename cml.yml to benchmarks.yml

* Revert "Rename cml.yml to benchmarks.yml"

This reverts commit 897299433a71a55827124728adff5de918d46d21.

* remove benchmarks.yml

* Use same file extension for all config files

* Use checkout@v3

* Run benchmarks sequentially

* Add timeout-minutes parameter

* Remove changes unrelated to datadog

* Apply black

* use haystack-oss aws account

* Update test/benchmarks/utils.py

Co-authored-by: Silvano Cerza <3314350+silvanocerza@users.noreply.github.com>

* PR feedback

* fix aws credentials step

* Fix path

* check docker

* Allow spinning up containers from within container

* Allow spinning up containers from within container

* Separate launching doc stores from benchmarks

* Remove docker related commands

* run only retrievers

* change port

* Revert "change port"

This reverts commit 6e5bcebb1d16e03ba7672be7e8a089084c7fc3a7.

* Run opensearch benchmark only

* Run weaviate benchmark only

* Run bm25 benchmarks only

* Changes host of doc stores

* add step to get docker logs

* Revert "add step to get docker logs"

This reverts commit c10e6faa76bde5df406a027203bd775d18c93c90.

* Install docker

* Launch doc store containers from wtihin runner container

* Remove kill command

* Change host

* dump docker logs

* change port

* Add cloud startup script

* dump docker logs

* add network param

* add network to startup.sh

* check cluster health

* move steps

* change port

* try using services

* check cluster health

* use services

* run only weaviate

* change host

* Upload benchmark results as artifacts

* Update configs

* Delete index after benchmark run

* Use correct index name

* Run only failing config

* Use smaller batch size

* Increase memory for opensearch

* Reduce batch size further

* Provide more storage

* Reduce batch size

* dump docker logs

* add java opts

* Spin up only opensearch container

* Create separate job for each doc store

* Run benchmarks sequentially

* Set working directory

* Account for reader benchmarks not doing indexing

* Change key of reader metrics

* Apply PR feedback

* Remove whitespace

* Adapt workflow to changes in datadog scripts

* Adapt workflow to changes in datadog scripts

* Increase memory for opensearch

* Reduce batch size

* Add preprocessing_batch_size to Readers

* Remove unrelated change

* Move order

* Fix path

* Manually terminate EC2 instance

Manually terminate EC2 instance

Manually terminate EC2 instance

Manually terminate EC2 instance

Manually terminate EC2 instance

Manually terminate EC2 instance

Manually terminate EC2 instance

Manually terminate EC2 instance

* Manually terminate EC2 instance

* Manually terminate EC2 instance

* Always terminate runner

* Always terminate runner

* Remove unnecessary terminate-runner job

* Add cron schedule

* Disable telemetry

* Rename cml.yml to benchmarks.yml

---------

Co-authored-by: rjanjua <rohan.janjua@gmail.com>
Co-authored-by: Paul Steppacher <p.steppacher91@gmail.com>
Co-authored-by: Silvano Cerza <3314350+silvanocerza@users.noreply.github.com>
Co-authored-by: Silvano Cerza <silvanocerza@gmail.com>
2023-08-17 12:56:45 +02:00

83 lines
3.4 KiB
Python

from pathlib import Path
from typing import Dict
import argparse
import json
import posthog
from haystack import Pipeline
from haystack.pipelines.config import read_pipeline_config_from_yaml
from utils import prepare_environment, contains_reader, contains_retriever
from reader import benchmark_reader
from retriever import benchmark_retriever
from retriever_reader import benchmark_retriever_reader
# Disable telemetry reports when running benchmarks
posthog.disabled = True
def run_benchmark(pipeline_yaml: Path) -> Dict:
"""
Run benchmarking on a given pipeline. Pipeline can be a retriever, reader, or retriever-reader pipeline.
In case of retriever or retriever-reader pipelines, indexing is also benchmarked, so the config file must
contain an indexing pipeline as well.
:param pipeline_yaml: Path to pipeline YAML config. The config file should contain a benchmark_config section where
the following parameters are specified:
- documents_directory: Directory containing files to index.
- labels_file: Path to evaluation set.
- data_url (optional): URL to download the data from. Downloaded data will be stored in
the directory `data/`.
"""
pipeline_config = read_pipeline_config_from_yaml(pipeline_yaml)
benchmark_config = pipeline_config.pop("benchmark_config", {})
# Prepare environment
prepare_environment(pipeline_config, benchmark_config)
labels_file = Path(benchmark_config["labels_file"])
querying_pipeline = Pipeline.load_from_config(pipeline_config, pipeline_name="querying")
pipeline_contains_reader = contains_reader(querying_pipeline)
pipeline_contains_retriever = contains_retriever(querying_pipeline)
# Retriever-Reader pipeline
if pipeline_contains_retriever and pipeline_contains_reader:
documents_dir = Path(benchmark_config["documents_directory"])
indexing_pipeline = Pipeline.load_from_config(pipeline_config, pipeline_name="indexing")
results = benchmark_retriever_reader(indexing_pipeline, querying_pipeline, documents_dir, labels_file)
# Retriever pipeline
elif pipeline_contains_retriever:
documents_dir = Path(benchmark_config["documents_directory"])
indexing_pipeline = Pipeline.load_from_config(pipeline_config, pipeline_name="indexing")
results = benchmark_retriever(indexing_pipeline, querying_pipeline, documents_dir, labels_file)
# Reader pipeline
elif pipeline_contains_reader:
results = benchmark_reader(querying_pipeline, labels_file)
# Unsupported pipeline type
else:
raise ValueError("Pipeline must be a retriever, reader, or retriever-reader pipeline.")
pipeline_config["benchmark_config"] = benchmark_config
results["config"] = pipeline_config
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config", type=str, help="Path to pipeline YAML config.")
parser.add_argument("--output", type=str, help="Path to output file.")
args = parser.parse_args()
config_file = Path(args.config)
output_file = f"{config_file.stem}_results.json" if args.output is None else args.output
results = run_benchmark(config_file)
with open(output_file, "w") as f:
json.dump(results, f, indent=2)