mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-29 11:50:34 +00:00

* ci: Fix all ruff pyflakes errors except unused imports * Delete releasenotes/notes/fix-some-pyflakes-errors-69a1106efa5d0203.yaml
467 lines
16 KiB
Python
467 lines
16 KiB
Python
import json
|
|
import uuid
|
|
from unittest import mock
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import weaviate
|
|
|
|
from haystack.document_stores.weaviate import WeaviateDocumentStore
|
|
from haystack.schema import Document
|
|
from haystack.testing import DocumentStoreBaseTestAbstract
|
|
|
|
embedding_dim = 768
|
|
|
|
|
|
def get_uuid():
|
|
return str(uuid.uuid4())
|
|
|
|
|
|
class TestWeaviateDocumentStore(DocumentStoreBaseTestAbstract):
|
|
# Constants
|
|
|
|
index_name = "DocumentsTest"
|
|
|
|
@pytest.fixture
|
|
def ds(self):
|
|
return WeaviateDocumentStore(index=self.index_name, recreate_index=True, return_embedding=True)
|
|
|
|
@pytest.fixture(scope="class")
|
|
def documents(self):
|
|
documents = []
|
|
for i in range(3):
|
|
documents.append(
|
|
Document(
|
|
id=get_uuid(),
|
|
content=f"A Foo Document {i}",
|
|
meta={"name": f"name_{i}", "year": "2020", "month": "01", "numbers": [2.0, 4.0]},
|
|
embedding=np.random.rand(768).astype(np.float32),
|
|
)
|
|
)
|
|
|
|
documents.append(
|
|
Document(
|
|
id=get_uuid(),
|
|
content=f"A Bar Document {i}",
|
|
meta={"name": f"name_{i}", "year": "2021", "month": "02", "numbers": [-2.0, -4.0]},
|
|
embedding=np.random.rand(768).astype(np.float32),
|
|
)
|
|
)
|
|
|
|
documents.append(
|
|
Document(
|
|
id=get_uuid(),
|
|
content=f"A Baz Document {i}",
|
|
meta={"name": f"name_{i}", "month": "03"},
|
|
embedding=np.random.rand(768).astype(np.float32),
|
|
)
|
|
)
|
|
|
|
return documents
|
|
|
|
@pytest.fixture()
|
|
def mocked_ds(self):
|
|
"""
|
|
This fixture provides an instance of the WeaviateDocumentStore equipped with a mocked Weaviate client.
|
|
"""
|
|
with mock.patch("haystack.document_stores.weaviate.client") as mocked_client:
|
|
mocked_client.Client().is_ready.return_value = True
|
|
mocked_client.Client().schema.contains.return_value = False
|
|
yield WeaviateDocumentStore()
|
|
|
|
@pytest.mark.skip(reason="Weaviate does not support labels")
|
|
@pytest.mark.integration
|
|
def test_write_labels(self):
|
|
pass
|
|
|
|
@pytest.mark.skip(reason="Weaviate does not support labels")
|
|
@pytest.mark.integration
|
|
def test_delete_labels(self):
|
|
pass
|
|
|
|
@pytest.mark.skip(reason="Weaviate does not support labels")
|
|
@pytest.mark.integration
|
|
def test_delete_labels_by_id(self):
|
|
pass
|
|
|
|
@pytest.mark.skip(reason="Weaviate does not support labels")
|
|
@pytest.mark.integration
|
|
def test_delete_labels_by_filter(self):
|
|
pass
|
|
|
|
@pytest.mark.skip(reason="Weaviate does not support labels")
|
|
@pytest.mark.integration
|
|
def test_delete_labels_by_filter_id(self):
|
|
pass
|
|
|
|
@pytest.mark.skip(reason="Weaviate does not support labels")
|
|
@pytest.mark.integration
|
|
def test_get_label_count(self):
|
|
pass
|
|
|
|
@pytest.mark.skip(reason="Weaviate does not support labels")
|
|
@pytest.mark.integration
|
|
def test_write_labels_duplicate(self):
|
|
pass
|
|
|
|
@pytest.mark.skip(reason="Weaviate does not support labels")
|
|
@pytest.mark.integration
|
|
def test_write_get_all_labels(self):
|
|
pass
|
|
|
|
@pytest.mark.skip(reason="Weaviate does not support labels")
|
|
@pytest.mark.integration
|
|
def test_labels_with_long_texts(self):
|
|
pass
|
|
|
|
@pytest.mark.skip(reason="Weaviate does not support labels")
|
|
@pytest.mark.integration
|
|
def test_multilabel(self):
|
|
pass
|
|
|
|
@pytest.mark.skip(reason="Weaviate does not support labels")
|
|
@pytest.mark.integration
|
|
def test_multilabel_no_answer(self):
|
|
pass
|
|
|
|
@pytest.mark.skip(reason="Weaviate does not support labels")
|
|
@pytest.mark.integration
|
|
def test_multilabel_filter_aggregations(self):
|
|
pass
|
|
|
|
@pytest.mark.skip(reason="Weaviate does not support labels")
|
|
@pytest.mark.integration
|
|
def test_multilabel_meta_aggregations(self):
|
|
pass
|
|
|
|
@pytest.mark.integration
|
|
def test_ne_filters(self, ds, documents):
|
|
"""
|
|
Weaviate doesn't include documents if the field is missing,
|
|
so we customize this test
|
|
"""
|
|
ds.write_documents(documents)
|
|
|
|
result = ds.get_all_documents(filters={"year": {"$ne": "2020"}})
|
|
assert len(result) == 3
|
|
|
|
@pytest.mark.integration
|
|
def test_nin_filters(self, ds, documents):
|
|
"""
|
|
Weaviate doesn't include documents if the field is missing,
|
|
so we customize this test
|
|
"""
|
|
ds.write_documents(documents)
|
|
|
|
result = ds.get_all_documents(filters={"year": {"$nin": ["2020", "2021", "n.a."]}})
|
|
assert len(result) == 0
|
|
|
|
@pytest.mark.integration
|
|
def test_delete_index(self, ds, documents):
|
|
"""Contrary to other Document Stores, this doesn't raise if the index is empty"""
|
|
ds.write_documents(documents, index="custom_index")
|
|
assert ds.get_document_count(index="custom_index") == len(documents)
|
|
ds.delete_index(index="custom_index")
|
|
assert ds.get_document_count(index="custom_index") == 0
|
|
|
|
@pytest.mark.integration
|
|
def test_query_by_embedding(self, ds, documents):
|
|
ds.write_documents(documents)
|
|
|
|
docs = ds.query_by_embedding(np.random.rand(embedding_dim).astype(np.float32))
|
|
assert len(docs) == 9
|
|
|
|
docs = ds.query_by_embedding(np.random.rand(embedding_dim).astype(np.float32), top_k=1)
|
|
assert len(docs) == 1
|
|
|
|
docs = ds.query_by_embedding(np.random.rand(embedding_dim).astype(np.float32), filters={"name": ["name_1"]})
|
|
assert len(docs) == 3
|
|
|
|
@pytest.mark.integration
|
|
def test_query(self, ds, documents):
|
|
ds.write_documents(documents)
|
|
|
|
query_text = "Foo"
|
|
docs = ds.query(query_text)
|
|
assert len(docs) == 3
|
|
|
|
# BM25 retrieval WITH filters is not yet supported as of Weaviate v1.14.1
|
|
# Should be from 1.18: https://github.com/semi-technologies/weaviate/issues/2393
|
|
# docs = ds.query(query_text, filters={"name": ["name_1"]})
|
|
# assert len(docs) == 1
|
|
|
|
docs = ds.query(query=None, filters={"name": ["name_0"]})
|
|
assert len(docs) == 3
|
|
|
|
docs = ds.query(query=None, filters={"content": [query_text.lower()]})
|
|
assert len(docs) == 3
|
|
|
|
docs = ds.query(query=None, filters={"content": ["baz"]})
|
|
assert len(docs) == 3
|
|
|
|
@pytest.mark.integration
|
|
def test_get_all_documents_unaffected_by_QUERY_MAXIMUM_RESULTS(self, ds, documents, monkeypatch):
|
|
"""
|
|
Ensure `get_all_documents` works no matter the value of QUERY_MAXIMUM_RESULTS
|
|
see https://github.com/deepset-ai/haystack/issues/2517
|
|
"""
|
|
ds.write_documents(documents)
|
|
monkeypatch.setattr(ds, "get_document_count", lambda **kwargs: 13_000)
|
|
docs = ds.get_all_documents()
|
|
assert len(docs) == 9
|
|
|
|
@pytest.mark.integration
|
|
def test_deleting_by_id_or_by_filters(self, ds, documents):
|
|
ds.write_documents(documents)
|
|
# This test verifies that deleting an object by its ID does not first require fetching all documents. This fixes
|
|
# a bug, as described in https://github.com/deepset-ai/haystack/issues/2898
|
|
ds.get_all_documents = mock.MagicMock(wraps=ds.get_all_documents)
|
|
|
|
assert ds.get_document_count() == 9
|
|
|
|
# Delete a document by its ID. This should bypass the get_all_documents() call
|
|
ds.delete_documents(ids=[documents[0].id])
|
|
ds.get_all_documents.assert_not_called()
|
|
assert ds.get_document_count() == 8
|
|
|
|
ds.get_all_documents.reset_mock()
|
|
# Delete a document with filters. Prove that using the filters will go through get_all_documents()
|
|
ds.delete_documents(filters={"name": ["name_0"]})
|
|
ds.get_all_documents.assert_called()
|
|
assert ds.get_document_count() == 6
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.parametrize("similarity", ["cosine", "l2", "dot_product"])
|
|
def test_similarity_existing_index(self, similarity):
|
|
"""Testing non-matching similarity"""
|
|
# create the document_store
|
|
WeaviateDocumentStore(
|
|
similarity=similarity, index=f"test_similarity_existing_index_{similarity}", recreate_index=True
|
|
)
|
|
|
|
# try to connect to the same document store but using the wrong similarity
|
|
non_matching_similarity = "l2" if similarity == "cosine" else "cosine"
|
|
with pytest.raises(ValueError, match=r"This index already exists in Weaviate with similarity .*"):
|
|
WeaviateDocumentStore(
|
|
similarity=non_matching_similarity,
|
|
index=f"test_similarity_existing_index_{similarity}",
|
|
recreate_index=False,
|
|
)
|
|
|
|
@pytest.mark.integration
|
|
def test_cant_write_id_in_meta(self, ds):
|
|
with pytest.raises(ValueError, match='"meta" info contains duplicate key "id"'):
|
|
ds.write_documents([Document(content="test", meta={"id": "test-id"})])
|
|
|
|
@pytest.mark.integration
|
|
def test_cant_write_top_level_fields_in_meta(self, ds):
|
|
with pytest.raises(ValueError, match='"meta" info contains duplicate key "content"'):
|
|
ds.write_documents([Document(content="test", meta={"content": "test-id"})])
|
|
|
|
@pytest.mark.integration
|
|
def test_get_embedding_count(self, ds, documents):
|
|
"""
|
|
We expect 9 docs with embeddings because all documents in the documents fixture for this class contain
|
|
embeddings.
|
|
"""
|
|
ds.write_documents(documents)
|
|
assert ds.get_embedding_count() == 9
|
|
|
|
@pytest.mark.unit
|
|
def test__get_auth_secret(self):
|
|
# Test with username and password
|
|
secret = WeaviateDocumentStore._get_auth_secret("user", "pass", scope="some_scope")
|
|
assert isinstance(secret, weaviate.AuthClientPassword)
|
|
|
|
# Test with api key
|
|
secret = WeaviateDocumentStore._get_auth_secret(api_key="wcs_api_key")
|
|
assert isinstance(secret, weaviate.AuthApiKey)
|
|
|
|
# Test with no authentication method
|
|
secret = WeaviateDocumentStore._get_auth_secret()
|
|
assert secret is None
|
|
|
|
@pytest.mark.unit
|
|
@pytest.mark.parametrize(
|
|
"embedded_options, expected_options",
|
|
[
|
|
(None, weaviate.EmbeddedOptions()),
|
|
(
|
|
{"hostname": "http://localhost", "port": "8080"},
|
|
weaviate.EmbeddedOptions(hostname="http://localhost", port="8080"),
|
|
),
|
|
],
|
|
)
|
|
def test__get_embedded_options(self, embedded_options, expected_options):
|
|
options = WeaviateDocumentStore._get_embedded_options(embedded_options)
|
|
assert options == expected_options
|
|
|
|
@pytest.mark.unit
|
|
def test__get_current_properties(self, mocked_ds):
|
|
mocked_ds.weaviate_client.schema.get.return_value = json.loads(
|
|
"""
|
|
{
|
|
"classes": [{
|
|
"class": "Document",
|
|
"properties": [
|
|
{
|
|
"name": "hasWritten",
|
|
"dataType": ["Article"]
|
|
},
|
|
{
|
|
"name": "hitCounter",
|
|
"dataType": ["int"]
|
|
}
|
|
]
|
|
}]
|
|
} """
|
|
)
|
|
# Ensure we dropped the cross-reference property
|
|
assert mocked_ds._get_current_properties() == ["hitCounter"]
|
|
|
|
@pytest.mark.unit
|
|
def test_dict_metadata(self, mocked_ds):
|
|
"""
|
|
Tests that metadata of type dict is converted to JSON string when writing to Weaviate and converted
|
|
back to dict when reading from Weaviate.
|
|
"""
|
|
doc = Document(content="test", meta={"dict_field": {"key": "value"}})
|
|
# Test writing as JSON string
|
|
mocked_ds.write_documents([doc])
|
|
mocked_ds.weaviate_client.batch.add_data_object.assert_called_with(
|
|
data_object={
|
|
"content": json.dumps(doc.content),
|
|
"content_type": doc.content_type,
|
|
"id_hash_keys": doc.id_hash_keys,
|
|
"dict_field": json.dumps(doc.meta["dict_field"]),
|
|
},
|
|
class_name=mock.ANY,
|
|
uuid=mock.ANY,
|
|
vector=mock.ANY,
|
|
)
|
|
|
|
# Test retrieving as dict
|
|
mocked_ds.weaviate_client.query.get().do.return_value = json.loads(
|
|
"""
|
|
{
|
|
"data": {
|
|
"Get": {
|
|
"Document": [
|
|
{
|
|
"content": "\\"test\\"",
|
|
"content_type": "text",
|
|
"dict_field": "{\\"key\\": \\"value\\"}",
|
|
"id_hash_keys": ["content"]
|
|
}
|
|
]
|
|
}
|
|
}
|
|
}
|
|
"""
|
|
)
|
|
mocked_ds.get_document_count = mock.MagicMock(return_value=1)
|
|
mocked_ds.weaviate_client.schema.get.return_value = json.loads(
|
|
"""
|
|
{
|
|
"classes": [
|
|
{
|
|
"class": "Document",
|
|
"description": "Haystack index, it's a class in Weaviate",
|
|
"properties": [
|
|
{
|
|
"dataType": ["text"],
|
|
"description": "Document Content (e.g. the text)",
|
|
"name": "content",
|
|
"tokenization": "word"
|
|
},
|
|
{
|
|
"dataType": ["text"],
|
|
"description": "JSON dynamic property dict_field",
|
|
"name": "dict_field",
|
|
"tokenization": "whitespace"
|
|
}
|
|
]
|
|
}
|
|
]
|
|
}
|
|
"""
|
|
)
|
|
retrieved_docs = mocked_ds.get_all_documents()
|
|
assert retrieved_docs[0].meta["dict_field"] == {"key": "value"}
|
|
|
|
@pytest.mark.unit
|
|
def test_list_of_dict_metadata(self, mocked_ds):
|
|
"""
|
|
Tests that metadata of type list of dict is converted to list of JSON string when writing to Weaviate and
|
|
converted back to list of dict when reading from Weaviate.
|
|
"""
|
|
doc = Document(content="test", meta={"list_dict_field": [{"key": "value"}, {"key": "value"}]})
|
|
# Test writing as list of JSON strings
|
|
mocked_ds.write_documents([doc])
|
|
mocked_ds.weaviate_client.batch.add_data_object.assert_called_with(
|
|
data_object={
|
|
"content": json.dumps(doc.content),
|
|
"content_type": doc.content_type,
|
|
"id_hash_keys": doc.id_hash_keys,
|
|
"list_dict_field": [json.dumps(item) for item in doc.meta["list_dict_field"]],
|
|
},
|
|
class_name=mock.ANY,
|
|
uuid=mock.ANY,
|
|
vector=mock.ANY,
|
|
)
|
|
|
|
# Test retrieving as list of dict
|
|
mocked_ds.weaviate_client.query.get().do.return_value = json.loads(
|
|
"""
|
|
{
|
|
"data": {
|
|
"Get": {
|
|
"Document": [
|
|
{
|
|
"content": "\\"test\\"",
|
|
"content_type": "text",
|
|
"list_dict_field": ["{\\"key\\": \\"value\\"}", "{\\"key\\": \\"value\\"}"],
|
|
"id_hash_keys": ["content"]
|
|
}
|
|
]
|
|
}
|
|
}
|
|
}
|
|
"""
|
|
)
|
|
mocked_ds.get_document_count = mock.MagicMock(return_value=1)
|
|
mocked_ds.weaviate_client.schema.get.return_value = json.loads(
|
|
"""
|
|
{
|
|
"classes": [
|
|
{
|
|
"class": "Document",
|
|
"description": "Haystack index, it's a class in Weaviate",
|
|
"properties": [
|
|
{
|
|
"dataType": ["text"],
|
|
"description": "Document Content (e.g. the text)",
|
|
"name": "content",
|
|
"tokenization": "word"
|
|
},
|
|
{
|
|
"dataType": ["text[]"],
|
|
"description": "JSON dynamic property dict_field",
|
|
"name": "list_dict_field",
|
|
"tokenization": "whitespace"
|
|
}
|
|
]
|
|
}
|
|
]
|
|
}
|
|
"""
|
|
)
|
|
retrieved_docs = mocked_ds.get_all_documents()
|
|
assert retrieved_docs[0].meta["list_dict_field"] == [{"key": "value"}, {"key": "value"}]
|
|
|
|
@pytest.mark.unit
|
|
def test_write_documents_req_for_each_batch(self, mocked_ds, documents):
|
|
mocked_ds.batch_size = 2
|
|
mocked_ds.write_documents(documents)
|
|
assert mocked_ds.weaviate_client.batch.create_objects.call_count == 5
|