mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-31 20:58:29 +00:00

* Add lost in the middle ranker * Add release note * Julian's feedback: more precise version of truncate * Better comments for the litm algorithm * Sebastian PR feedback * Add check for invalid values of word_count_threshold * Remove _truncate as it is not needed any more --------- Co-authored-by: Darja Fokina <daria.f93@gmail.com>
155 lines
6.6 KiB
Python
155 lines
6.6 KiB
Python
import pytest
|
|
|
|
from haystack import Document
|
|
from haystack.nodes.ranker.lost_in_the_middle import LostInTheMiddleRanker
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_lost_in_the_middle_order_odd():
|
|
# tests that lost_in_the_middle order works with an odd number of documents
|
|
docs = [Document(str(i)) for i in range(1, 10)]
|
|
ranker = LostInTheMiddleRanker()
|
|
result, _ = ranker.run(query="", documents=docs)
|
|
assert result["documents"]
|
|
expected_order = "1 3 5 7 9 8 6 4 2".split()
|
|
assert all(doc.content == expected_order[idx] for idx, doc in enumerate(result["documents"]))
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_batch_lost_in_the_middle_order():
|
|
# tests that lost_in_the_middle order works with a batch of documents
|
|
docs = [
|
|
[Document("1"), Document("2"), Document("3"), Document("4")],
|
|
[Document("5"), Document("6")],
|
|
[Document("7"), Document("8"), Document("9")],
|
|
]
|
|
ranker = LostInTheMiddleRanker()
|
|
result, _ = ranker.run_batch(queries=[""], documents=docs)
|
|
|
|
assert " ".join(doc.content for doc in result["documents"][0]) == "1 3 4 2"
|
|
assert " ".join(doc.content for doc in result["documents"][1]) == "5 6"
|
|
assert " ".join(doc.content for doc in result["documents"][2]) == "7 9 8"
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_lost_in_the_middle_order_even():
|
|
# tests that lost_in_the_middle order works with an even number of documents
|
|
docs = [Document(str(i)) for i in range(1, 11)]
|
|
ranker = LostInTheMiddleRanker()
|
|
result, _ = ranker.run(query="", documents=docs)
|
|
expected_order = "1 3 5 7 9 10 8 6 4 2".split()
|
|
assert all(doc.content == expected_order[idx] for idx, doc in enumerate(result["documents"]))
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_lost_in_the_middle_order_two_docs():
|
|
# tests that lost_in_the_middle order works with two documents
|
|
ranker = LostInTheMiddleRanker()
|
|
|
|
# two docs
|
|
docs = [Document("1"), Document("2")]
|
|
result, _ = ranker.run(query="", documents=docs)
|
|
assert result["documents"][0].content == "1"
|
|
assert result["documents"][1].content == "2"
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_lost_in_the_middle_init():
|
|
# tests that LostInTheMiddleRanker initializes with default values
|
|
ranker = LostInTheMiddleRanker()
|
|
assert ranker.word_count_threshold is None
|
|
|
|
ranker = LostInTheMiddleRanker(word_count_threshold=10)
|
|
assert ranker.word_count_threshold == 10
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_lost_in_the_middle_init_invalid_word_count_threshold():
|
|
# tests that LostInTheMiddleRanker raises an error when word_count_threshold is <= 0
|
|
with pytest.raises(ValueError, match="Invalid value for word_count_threshold"):
|
|
LostInTheMiddleRanker(word_count_threshold=0)
|
|
|
|
with pytest.raises(ValueError, match="Invalid value for word_count_threshold"):
|
|
LostInTheMiddleRanker(word_count_threshold=-5)
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_lost_in_the_middle_with_word_count_threshold():
|
|
# tests that lost_in_the_middle with word_count_threshold works as expected
|
|
ranker = LostInTheMiddleRanker(word_count_threshold=6)
|
|
docs = [Document("word" + str(i)) for i in range(1, 10)]
|
|
result, _ = ranker.run(query="", documents=docs)
|
|
expected_order = "word1 word3 word5 word6 word4 word2".split()
|
|
assert all(doc.content == expected_order[idx] for idx, doc in enumerate(result["documents"]))
|
|
|
|
ranker = LostInTheMiddleRanker(word_count_threshold=9)
|
|
result, _ = ranker.run(query="", documents=docs)
|
|
expected_order = "word1 word3 word5 word7 word9 word8 word6 word4 word2".split()
|
|
assert all(doc.content == expected_order[idx] for idx, doc in enumerate(result["documents"]))
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_word_count_threshold_greater_than_total_number_of_words_returns_all_documents():
|
|
ranker = LostInTheMiddleRanker(word_count_threshold=100)
|
|
docs = [Document("word" + str(i)) for i in range(1, 10)]
|
|
ordered_docs = ranker.predict(query="test", documents=docs)
|
|
assert len(ordered_docs) == len(docs)
|
|
expected_order = "word1 word3 word5 word7 word9 word8 word6 word4 word2".split()
|
|
assert all(doc.content == expected_order[idx] for idx, doc in enumerate(ordered_docs))
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_empty_documents_returns_empty_list():
|
|
ranker = LostInTheMiddleRanker()
|
|
assert ranker.predict(query="test", documents=[]) == []
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_list_of_one_document_returns_same_document():
|
|
ranker = LostInTheMiddleRanker()
|
|
doc = Document(content="test", content_type="text")
|
|
assert ranker.predict(query="test", documents=[doc]) == [doc]
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_non_textual_documents():
|
|
# tests that merging a list of non-textual documents raises a ValueError
|
|
ranker = LostInTheMiddleRanker()
|
|
doc1 = Document(content="This is a textual document.")
|
|
doc2 = Document(content_type="image", content="This is a non-textual document.")
|
|
with pytest.raises(ValueError, match="Some provided documents are not textual"):
|
|
ranker.reorder_documents([doc1, doc2])
|
|
|
|
|
|
@pytest.mark.unit
|
|
@pytest.mark.parametrize("top_k", [1, 2, 3, 4, 5, 6, 7, 8, 12, 20])
|
|
def test_lost_in_the_middle_order_with_postive_top_k(top_k: int):
|
|
# tests that lost_in_the_middle order works with an odd number of documents and a top_k parameter
|
|
docs = [Document(str(i)) for i in range(1, 10)]
|
|
ranker = LostInTheMiddleRanker()
|
|
result = ranker.predict(query="irrelevant", documents=docs, top_k=top_k)
|
|
if top_k < len(docs):
|
|
# top_k is less than the number of documents, so only the top_k documents should be returned in LITM order
|
|
assert len(result) == top_k
|
|
expected_order = ranker.predict(query="irrelevant", documents=[Document(str(i)) for i in range(1, top_k + 1)])
|
|
assert result == expected_order
|
|
else:
|
|
# top_k is greater than the number of documents, so all documents should be returned in LITM order
|
|
assert len(result) == len(docs)
|
|
assert result == ranker.predict(query="irrelevant", documents=docs)
|
|
|
|
|
|
@pytest.mark.unit
|
|
@pytest.mark.parametrize("top_k", [-20, -10, -5, -1])
|
|
def test_lost_in_the_middle_order_with_negative_top_k(top_k: int):
|
|
# tests that lost_in_the_middle order works with an odd number of documents and an invalid top_k parameter
|
|
docs = [Document(str(i)) for i in range(1, 10)]
|
|
ranker = LostInTheMiddleRanker()
|
|
result = ranker.predict(query="irrelevant", documents=docs, top_k=top_k)
|
|
if top_k < len(docs) * -1:
|
|
assert len(result) == 0 # top_k is too negative, so no documents should be returned
|
|
else:
|
|
# top_k is negative, subtract it from the total number of documents to get the expected number of documents
|
|
expected_docs = ranker.predict(query="irrelevant", documents=docs, top_k=len(docs) + top_k)
|
|
assert result == expected_docs
|