mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-31 20:58:29 +00:00

* Split root conftest into multiple ones and remove unused fixtures * Remove some constants and make them fixtures * Remove unnecessary fixture scoping * Fix failing whisper tests * Fix image_file_paths fixture
60 lines
2.7 KiB
Python
60 lines
2.7 KiB
Python
import os
|
|
|
|
import pytest
|
|
|
|
from haystack import Pipeline
|
|
from haystack.nodes.audio import WhisperTranscriber
|
|
from haystack.utils.import_utils import is_whisper_available
|
|
|
|
|
|
@pytest.mark.skipif(os.environ.get("OPENAI_API_KEY", "") == "", reason="OpenAI API key not found")
|
|
@pytest.mark.integration
|
|
def test_whisper_api_transcribe(samples_path):
|
|
w = WhisperTranscriber(api_key=os.environ.get("OPENAI_API_KEY"))
|
|
audio_object_transcript, audio_path_transcript = transcribe_test_helper(w, samples_path=samples_path)
|
|
assert "segments" not in audio_object_transcript and "segments" not in audio_path_transcript
|
|
|
|
|
|
@pytest.mark.skip("Fails on CI cause it fills up memory")
|
|
@pytest.mark.integration
|
|
@pytest.mark.skipif(not is_whisper_available(), reason="Whisper is not installed")
|
|
def test_whisper_local_transcribe(samples_path):
|
|
w = WhisperTranscriber()
|
|
audio_object_transcript, audio_path_transcript = transcribe_test_helper(w, samples_path=samples_path, language="en")
|
|
assert "segments" not in audio_object_transcript and "segments" not in audio_path_transcript
|
|
|
|
|
|
@pytest.mark.skip("Fails on CI cause it fills up memory")
|
|
@pytest.mark.integration
|
|
@pytest.mark.skipif(not is_whisper_available(), reason="Whisper is not installed")
|
|
def test_whisper_local_transcribe_with_params(samples_path):
|
|
w = WhisperTranscriber()
|
|
audio_object, audio_path = transcribe_test_helper(w, samples_path=samples_path, language="en", return_segments=True)
|
|
assert len(audio_object["segments"]) == 1 and len(audio_path["segments"]) == 1
|
|
|
|
|
|
def transcribe_test_helper(whisper, samples_path, **kwargs):
|
|
# this file is 1 second long and contains the word "answer"
|
|
file_path = str(samples_path / "audio" / "answer.wav")
|
|
|
|
# using audio object
|
|
with open(file_path, mode="rb") as audio_file:
|
|
audio_object_transcript = whisper.transcribe(audio_file=audio_file, **kwargs)
|
|
assert "answer" in audio_object_transcript["text"].lower()
|
|
|
|
# using path to audio file
|
|
audio_path_transcript = whisper.transcribe(audio_file=file_path, **kwargs)
|
|
assert "answer" in audio_path_transcript["text"].lower()
|
|
return audio_object_transcript, audio_path_transcript
|
|
|
|
|
|
@pytest.mark.skipif(os.environ.get("OPENAI_API_KEY", "") == "", reason="OpenAI API key not found")
|
|
@pytest.mark.integration
|
|
def test_whisper_pipeline(samples_path):
|
|
w = WhisperTranscriber(api_key=os.environ.get("OPENAI_API_KEY"))
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(component=w, name="whisper", inputs=["File"])
|
|
res = pipeline.run(file_paths=[str(samples_path / "audio" / "answer.wav")])
|
|
assert res["documents"] and len(res["documents"]) == 1
|
|
assert "answer" in res["documents"][0].content.lower()
|