haystack/test/pipelines/test_ray.py
2023-10-12 21:50:53 +02:00

98 lines
4.3 KiB
Python

import pytest
from haystack.pipelines import RayPipeline
@pytest.fixture()
def ray():
try:
import ray
yield ray
ray.serve.shutdown()
ray.shutdown()
except:
pass
@pytest.mark.integration
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
@pytest.mark.parametrize("serve_detached", [True, False])
def test_load_pipeline(ray, document_store_with_docs, serve_detached, samples_path):
pipeline = RayPipeline.load_from_yaml(
samples_path / "pipeline" / "ray.simple.haystack-pipeline.yml",
pipeline_name="ray_query_pipeline",
ray_args={"num_cpus": 8},
serve_args={"detached": serve_detached},
)
prediction = pipeline.run(
query="Who lives in Berlin?", params={"ESRetriever": {"top_k": 10}, "Reader": {"top_k": 3}}
)
assert pipeline._serve_controller_client._detached == serve_detached
assert ray.serve.get_deployment(name="ESRetriever").num_replicas == 2
assert ray.serve.get_deployment(name="Reader").num_replicas == 1
assert ray.serve.get_deployment(name="ESRetriever").max_concurrent_queries == 17
assert ray.serve.get_deployment(name="ESRetriever").ray_actor_options["num_cpus"] == 0.5
assert prediction["query"] == "Who lives in Berlin?"
assert prediction["answers"][0].answer == "Carla"
@pytest.mark.integration
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
def test_load_advanced_pipeline(ray, document_store_with_docs, samples_path):
pipeline = RayPipeline.load_from_yaml(
samples_path / "pipeline" / "ray.advanced.haystack-pipeline.yml",
pipeline_name="ray_query_pipeline",
ray_args={"num_cpus": 8},
serve_args={"detached": True},
)
prediction = pipeline.run(
query="Who lives in Berlin?",
params={"ESRetriever1": {"top_k": 1}, "ESRetriever2": {"top_k": 2}, "Reader": {"top_k": 3}},
)
assert pipeline._serve_controller_client._detached is True
assert ray.serve.get_deployment(name="ESRetriever1").num_replicas == 2
assert ray.serve.get_deployment(name="ESRetriever2").num_replicas == 2
assert ray.serve.get_deployment(name="Reader").num_replicas == 1
assert ray.serve.get_deployment(name="ESRetriever1").max_concurrent_queries == 17
assert ray.serve.get_deployment(name="ESRetriever2").max_concurrent_queries == 15
assert ray.serve.get_deployment(name="ESRetriever1").ray_actor_options["num_cpus"] == 0.25
assert ray.serve.get_deployment(name="ESRetriever2").ray_actor_options["num_cpus"] == 0.25
assert prediction["query"] == "Who lives in Berlin?"
assert prediction["answers"][0].answer == "Carla"
assert len(prediction["answers"]) > 1
@pytest.mark.asyncio
@pytest.mark.integration
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
async def test_load_advanced_pipeline_async(ray, document_store_with_docs, samples_path):
pipeline = RayPipeline.load_from_yaml(
samples_path / "pipeline" / "ray.advanced.haystack-pipeline.yml",
pipeline_name="ray_query_pipeline",
ray_args={"num_cpus": 8},
serve_args={"detached": True},
)
prediction = await pipeline.run_async(
query="Who lives in Berlin?",
params={"ESRetriever1": {"top_k": 1}, "ESRetriever2": {"top_k": 2}, "Reader": {"top_k": 3}},
debug=True,
)
assert pipeline._serve_controller_client._detached is True
assert ray.serve.get_deployment(name="ESRetriever1").num_replicas == 2
assert ray.serve.get_deployment(name="ESRetriever2").num_replicas == 2
assert ray.serve.get_deployment(name="Reader").num_replicas == 1
assert ray.serve.get_deployment(name="ESRetriever1").max_concurrent_queries == 17
assert ray.serve.get_deployment(name="ESRetriever2").max_concurrent_queries == 15
assert ray.serve.get_deployment(name="ESRetriever1").ray_actor_options["num_cpus"] == 0.25
assert ray.serve.get_deployment(name="ESRetriever2").ray_actor_options["num_cpus"] == 0.25
assert prediction["query"] == "Who lives in Berlin?"
assert prediction["answers"][0].answer == "Carla"
assert len(prediction["answers"]) > 1
assert "exec_time_ms" in prediction["_debug"]["ESRetriever1"].keys()
assert prediction["_debug"]["ESRetriever1"]["exec_time_ms"]