haystack/test/prompt/invocation_layer/test_sagemaker_hf_text_gen.py
Vivek Silimkhan f998bf4a4f
feat: add Amazon Bedrock support (#6226)
* Add Bedrock

* Update supported models for Bedrock

* Fix supports and add extract response in Bedrock

* fix errors imports

* improve and refactor supports

* fix install

* fix mypy

* fix pylint

* fix existing tests

* Added Anthropic Bedrock

* fix tests

* fix sagemaker tests

* add default prompt handler, constructor and supports tests

* more tests

* invoke refactoring

* refactor model_kwargs

* fix mypy

* lstrip responses

* Add streaming support

* bump boto3 version

* add class docstrings, better exception names

* fix layer name

* add tests for anthropic and cohere model adapters

* update cohere params

* update ai21 args and add tests

* support cohere command light model

* add tital tests

* better class names

* support meta llama 2 model

* fix streaming support

* more future-proof model adapter selection

* fix import

* fix mypy

* fix pylint for preview

* add tests for streaming

* add release notes

* Apply suggestions from code review

Co-authored-by: Agnieszka Marzec <97166305+agnieszka-m@users.noreply.github.com>

* fix format

* fix tests after msg changes

* fix streaming for cohere

---------

Co-authored-by: tstadel <60758086+tstadel@users.noreply.github.com>
Co-authored-by: tstadel <thomas.stadelmann@deepset.ai>
Co-authored-by: Agnieszka Marzec <97166305+agnieszka-m@users.noreply.github.com>
2023-11-15 13:26:29 +01:00

278 lines
11 KiB
Python

import os
from unittest.mock import patch, MagicMock, Mock
import pytest
from haystack.lazy_imports import LazyImport
from haystack.errors import SageMakerConfigurationError
from haystack.nodes.prompt.invocation_layer import SageMakerHFTextGenerationInvocationLayer
with LazyImport() as boto3_import:
from botocore.exceptions import BotoCoreError
# create a fixture with mocked boto3 client and session
@pytest.fixture
def mock_boto3_session():
with patch("boto3.Session") as mock_client:
yield mock_client
@pytest.fixture
def mock_prompt_handler():
with patch("haystack.nodes.prompt.invocation_layer.handlers.DefaultPromptHandler") as mock_prompt_handler:
yield mock_prompt_handler
@pytest.mark.unit
def test_default_constructor(mock_auto_tokenizer, mock_boto3_session):
"""
Test that the default constructor sets the correct values
"""
layer = SageMakerHFTextGenerationInvocationLayer(
model_name_or_path="some_fake_model",
max_length=99,
aws_access_key_id="some_fake_id",
aws_secret_access_key="some_fake_key",
aws_session_token="some_fake_token",
aws_profile_name="some_fake_profile",
aws_region_name="fake_region",
)
assert layer.max_length == 99
assert layer.model_name_or_path == "some_fake_model"
# assert mocked boto3 client called exactly once
mock_boto3_session.assert_called_once()
# assert mocked boto3 client was called with the correct parameters
mock_boto3_session.assert_called_with(
aws_access_key_id="some_fake_id",
aws_secret_access_key="some_fake_key",
aws_session_token="some_fake_token",
profile_name="some_fake_profile",
region_name="fake_region",
)
@pytest.mark.unit
def test_constructor_with_model_kwargs(mock_auto_tokenizer, mock_boto3_session):
"""
Test that model_kwargs are correctly set in the constructor
and that model_kwargs_rejected are correctly filtered out
"""
model_kwargs = {"temperature": 0.7, "do_sample": True, "stream": True}
model_kwargs_rejected = {"fake_param": 0.7, "another_fake_param": 1}
layer = SageMakerHFTextGenerationInvocationLayer(
model_name_or_path="some_fake_model", **model_kwargs, **model_kwargs_rejected
)
assert "temperature" in layer.model_input_kwargs
assert "do_sample" in layer.model_input_kwargs
assert "fake_param" not in layer.model_input_kwargs
assert "another_fake_param" not in layer.model_input_kwargs
@pytest.mark.unit
def test_invoke_with_no_kwargs(mock_auto_tokenizer, mock_boto3_session):
"""
Test that invoke raises an error if no prompt is provided
"""
layer = SageMakerHFTextGenerationInvocationLayer(model_name_or_path="some_fake_model")
with pytest.raises(ValueError, match="No prompt provided."):
layer.invoke()
@pytest.mark.unit
def test_invoke_with_stop_words(mock_auto_tokenizer, mock_boto3_session):
"""
Test stop words are correctly passed to HTTP POST request
"""
stop_words = ["but", "not", "bye"]
layer = SageMakerHFTextGenerationInvocationLayer(model_name_or_path="some_model", api_key="fake_key")
with patch("haystack.nodes.prompt.invocation_layer.SageMakerHFTextGenerationInvocationLayer._post") as mock_post:
# Mock the response, need to return a list of dicts
mock_post.return_value = MagicMock(text='[{"generated_text": "Hello"}]')
layer.invoke(prompt="Tell me hello", stop_words=stop_words)
assert mock_post.called
_, call_kwargs = mock_post.call_args
assert call_kwargs["params"]["stop"] == stop_words
@pytest.mark.unit
def test_short_prompt_is_not_truncated(mock_boto3_session):
# Define a short mock prompt and its tokenized version
mock_prompt_text = "I am a tokenized prompt"
mock_prompt_tokens = mock_prompt_text.split()
# Mock the tokenizer so it returns our predefined tokens
mock_tokenizer = MagicMock()
mock_tokenizer.tokenize.return_value = mock_prompt_tokens
# We set a small max_length for generated text (3 tokens) and a total model_max_length of 10 tokens
# Since our mock prompt is 5 tokens long, it doesn't exceed the
# total limit (5 prompt tokens + 3 generated tokens < 10 tokens)
max_length_generated_text = 3
total_model_max_length = 10
with patch("transformers.AutoTokenizer.from_pretrained", return_value=mock_tokenizer):
layer = SageMakerHFTextGenerationInvocationLayer(
"some_fake_endpoint", max_length=max_length_generated_text, model_max_length=total_model_max_length
)
prompt_after_resize = layer._ensure_token_limit(mock_prompt_text)
# The prompt doesn't exceed the limit, _ensure_token_limit doesn't truncate it
assert prompt_after_resize == mock_prompt_text
@pytest.mark.unit
def test_long_prompt_is_truncated(mock_boto3_session):
# Define a long mock prompt and its tokenized version
long_prompt_text = "I am a tokenized prompt of length eight"
long_prompt_tokens = long_prompt_text.split()
# _ensure_token_limit will truncate the prompt to make it fit into the model's max token limit
truncated_prompt_text = "I am a tokenized prompt of length"
# Mock the tokenizer to return our predefined tokens
# convert tokens to our predefined truncated text
mock_tokenizer = MagicMock()
mock_tokenizer.tokenize.return_value = long_prompt_tokens
mock_tokenizer.convert_tokens_to_string.return_value = truncated_prompt_text
# We set a small max_length for generated text (3 tokens) and a total model_max_length of 10 tokens
# Our mock prompt is 8 tokens long, so it exceeds the total limit (8 prompt tokens + 3 generated tokens > 10 tokens)
max_length_generated_text = 3
total_model_max_length = 10
with patch("transformers.AutoTokenizer.from_pretrained", return_value=mock_tokenizer):
layer = SageMakerHFTextGenerationInvocationLayer(
"some_fake_endpoint", max_length=max_length_generated_text, model_max_length=total_model_max_length
)
prompt_after_resize = layer._ensure_token_limit(long_prompt_text)
# The prompt exceeds the limit, _ensure_token_limit truncates it
assert prompt_after_resize == truncated_prompt_text
@pytest.mark.unit
def test_empty_model_name():
with pytest.raises(ValueError, match="cannot be None or empty string"):
SageMakerHFTextGenerationInvocationLayer(model_name_or_path="")
@pytest.mark.unit
def test_streaming_init_kwarg(mock_auto_tokenizer, mock_boto3_session):
"""
Test stream parameter passed as init kwarg is correctly logged as not supported
"""
layer = SageMakerHFTextGenerationInvocationLayer(model_name_or_path="irrelevant", stream=True)
with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"):
layer.invoke(prompt="Tell me hello")
@pytest.mark.unit
def test_streaming_invoke_kwarg(mock_auto_tokenizer, mock_boto3_session):
"""
Test stream parameter passed as invoke kwarg is correctly logged as not supported
"""
layer = SageMakerHFTextGenerationInvocationLayer(model_name_or_path="irrelevant")
with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"):
layer.invoke(prompt="Tell me hello", stream=True)
@pytest.mark.unit
def test_streaming_handler_init_kwarg(mock_auto_tokenizer, mock_boto3_session):
"""
Test stream_handler parameter passed as init kwarg is correctly logged as not supported
"""
layer = SageMakerHFTextGenerationInvocationLayer(model_name_or_path="irrelevant", stream_handler=Mock())
with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"):
layer.invoke(prompt="Tell me hello")
@pytest.mark.unit
def test_streaming_handler_invoke_kwarg(mock_auto_tokenizer, mock_boto3_session):
"""
Test stream_handler parameter passed as invoke kwarg is correctly logged as not supported
"""
layer = SageMakerHFTextGenerationInvocationLayer(model_name_or_path="irrelevant")
with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"):
layer.invoke(prompt="Tell me hello", stream_handler=Mock())
@pytest.mark.unit
def test_supports_for_valid_aws_configuration():
"""
Test that the SageMakerHFTextGenerationInvocationLayer identifies a valid SageMaker Inference endpoint via the supports() method
"""
mock_client = MagicMock()
mock_client.describe_endpoint.return_value = {"EndpointStatus": "InService"}
mock_session = MagicMock()
mock_session.client.return_value = mock_client
# Patch the class method to return the mock session
with patch(
"haystack.nodes.prompt.invocation_layer.aws_base.AWSBaseInvocationLayer.get_aws_session",
return_value=mock_session,
):
supported = SageMakerHFTextGenerationInvocationLayer.supports(
model_name_or_path="some_sagemaker_deployed_model", aws_profile_name="some_real_profile"
)
args, kwargs = mock_client.describe_endpoint.call_args
assert kwargs["EndpointName"] == "some_sagemaker_deployed_model"
args, kwargs = mock_session.client.call_args
assert args[0] == "sagemaker-runtime"
assert supported
@pytest.mark.unit
def test_supports_not_on_invalid_aws_profile_name():
"""
Test that the SageMakerHFTextGenerationInvocationLayer raises SageMakerConfigurationError when the profile name is invalid
"""
with patch("boto3.Session") as mock_boto3_session:
mock_boto3_session.side_effect = BotoCoreError()
with pytest.raises(SageMakerConfigurationError, match="Failed to initialize the session"):
SageMakerHFTextGenerationInvocationLayer.supports(
model_name_or_path="some_fake_model", aws_profile_name="some_fake_profile"
)
@pytest.mark.skipif(
not os.environ.get("TEST_SAGEMAKER_MODEL_ENDPOINT", None), reason="Skipping because SageMaker not configured"
)
@pytest.mark.integration
def test_supports_triggered_for_valid_sagemaker_endpoint():
"""
Test that the SageMakerHFTextGenerationInvocationLayer identifies a valid SageMaker Inference endpoint via the supports() method
"""
model_name_or_path = os.environ.get("TEST_SAGEMAKER_MODEL_ENDPOINT")
assert SageMakerHFTextGenerationInvocationLayer.supports(model_name_or_path=model_name_or_path)
@pytest.mark.skipif(
not os.environ.get("TEST_SAGEMAKER_MODEL_ENDPOINT", None), reason="Skipping because SageMaker not configured"
)
@pytest.mark.integration
def test_supports_not_triggered_for_invalid_iam_profile():
"""
Test that the SageMakerHFTextGenerationInvocationLayer identifies an invalid SageMaker Inference endpoint
(in this case because of an invalid IAM AWS Profile via the supports() method)
"""
assert not SageMakerHFTextGenerationInvocationLayer.supports(model_name_or_path="fake_endpoint")
assert not SageMakerHFTextGenerationInvocationLayer.supports(
model_name_or_path="fake_endpoint", aws_profile_name="invalid-profile"
)