mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-12-30 00:30:09 +00:00
* Simplify ODES init * Add arguments to ES init and create script * Rename similarity_fn_name and add util fn * Create OpenSearchDocumentStore * Specify params of Open Search HNSW * Add better argument handling * Update opensearch index mapping * Edit opensearch default port * Fix HNSW mapping * Force small HNSW params * Implement auto start and stopping of document store services * Fix starting and stopping of ds service * Restore HNSW params * Add opensearch query benchmarks * Add write wait time * Revert wait time * Add timeout * Update benchmarks * Update benchmarks * Update benchmarks json * Update documentation * Update documentation * Fix similarity name * Improve argument passing * Improve stopping and starting of service
88 lines
3.9 KiB
JSON
88 lines
3.9 KiB
JSON
{
|
|
"chart_type": "BarChart",
|
|
"title": "Retriever Performance",
|
|
"subtitle": "Time and Accuracy Benchmarks",
|
|
"description": "Comparison of the speed and accuracy of different DocumentStore / Retriever combinations on 100k documents. <b>Indexing speed</b> (in docs/sec) refers to how quickly Documents can be inserted into a DocumentStore. <b>Querying speed</b> (in queries/sec) refers to the speed at which the system returns relevant Documents when presented with a query.\n\nThe dataset used is Wikipedia, split into 100 word passages (from <a href='https://github.com/facebookresearch/DPR/blob/master/dpr/data/download_data.py'>here</a>)). \n\nFor querying, we use the Natural Questions development set in combination with the wiki passages. The Document Store is populated with the 100 word passages in which the answer spans occur (i.e. gold passages) as well as a random selection of 100 word passages in which the answer spans do not occur (i.e. negative passages). We take a total of 100k gold and negative passages. Query and document embedding are generated by the <i>\"facebook/dpr-question_encoder-single-nq-base\"</i> and <i>\"facebook/dpr-ctx_encoder-single-nq-base\"</i> models. The retriever returns 10 candidates and both the recall and mAP scores are calculated on these 10.\n\nFor FAISS HNSW, we use <i>n_links=128</i>, <i>efSearch=20</i> and <i>efConstruction=80</i>. We use a cosine similarity function with BM25 retrievers, and dot product with DPR. Both index and query benchmarks are performed on an AWS P3.2xlarge instance which is accelerated by an Nvidia V100 GPU.",
|
|
"bars": "horizontal",
|
|
"columns": [
|
|
"Model",
|
|
"mAP",
|
|
"Index Speed (docs/sec)",
|
|
"Query Speed (queries/sec)"
|
|
],
|
|
"series": {
|
|
"s0": "map",
|
|
"s1": "time",
|
|
"s2": "time"
|
|
},
|
|
"axes": {
|
|
"label": "map",
|
|
"time_side": "top",
|
|
"time_label": "seconds"
|
|
},
|
|
"data": [
|
|
{
|
|
"model": "DPR / Elasticsearch",
|
|
"n_docs": 100000,
|
|
"index_speed": 71.36964873196698,
|
|
"query_speed": 5.192368815242574,
|
|
"map": 86.54606328368976
|
|
},
|
|
{
|
|
"model": "BM25 / Elasticsearch",
|
|
"n_docs": 100000,
|
|
"index_speed": 485.5602670200369,
|
|
"query_speed": 103.0884393334727,
|
|
"map": 56.25299537353825
|
|
},
|
|
{
|
|
"model": "Sentence Transformers / Elasticsearch",
|
|
"n_docs": 100000,
|
|
"index_speed": 119.52937722555107,
|
|
"query_speed": 6.385621466857457,
|
|
"map": 82.74686664920836
|
|
},
|
|
{
|
|
"model": "DPR / FAISS (flat)",
|
|
"n_docs": 100000,
|
|
"index_speed": 100.01184910084558,
|
|
"query_speed": 6.6270933964840415,
|
|
"map": 86.54606328368973
|
|
},
|
|
{
|
|
"model": "DPR / FAISS (HNSW)",
|
|
"n_docs": 100000,
|
|
"index_speed": 89.90389306648805,
|
|
"query_speed": 39.7839528511866,
|
|
"map": 84.33419639513305
|
|
},
|
|
{
|
|
"model": "DPR / Milvus (flat)",
|
|
"n_docs": 100000,
|
|
"index_speed": 116.00982709720004,
|
|
"query_speed": 28.57264344960955,
|
|
"map": 86.54606328368973
|
|
},
|
|
{
|
|
"model": "DPR / Milvus (HNSW)",
|
|
"n_docs": 100000,
|
|
"index_speed": 115.61076852516383,
|
|
"query_speed": 38.80526238789059,
|
|
"map": 81.63864883662649
|
|
},
|
|
{
|
|
"model": "DPR / OpenSearch (flat)",
|
|
"n_docs": 100000,
|
|
"index_speed": 70.05381128388427,
|
|
"query_speed": 15.306895223372484,
|
|
"map": 86.54014997282701
|
|
},
|
|
{
|
|
"model": "DPR / OpenSearch (HNSW)",
|
|
"n_docs": 100000,
|
|
"index_speed": 70.31004397719536,
|
|
"query_speed": 24.95733865947408,
|
|
"map": 85.7342431384476
|
|
}
|
|
]
|
|
} |