haystack/test/document_stores/test_weaviate.py
Zoltan Fedor adb2b2c312
Add support for BM25 with the Weaviate document store (#2860)
* Upgrading Weaviate used for testing to 1.14.1 from 1.11.0

This has also brought up an issue with one of the test filtering for value "a". This test has started to fail, as "a" is a default stopword in Weaviate, so I have changed this test to look for value "c" instead of value "a" to get around the stopword issue.

* Weaviate client upgrade

From v3.3.3 to v3.6.0

* Adding BM25 Retrieval to Weaviate

Weaviate now supports BM25 retrieval in experiment mode and with some limitations (like it cannot be combined with filters).
This commit adds support for inverted index (BM25) querying against Weaviate.

* Running Black on the recent code changes

* Update Documentation & Code Style

* Fixing linting issues after code changes by black

* The BM25 query needs to be in all lowercase for now

The BM25 query needs to be provided all lowercase while the functionality is in experimental mode in Weaviate.
See https://app.slack.com/client/T0181DYT9KN/C017EG2SL3H/thread/C017EG2SL3H-1658790227.208119

* Fixing method parameter docstring to highlight that they are not supported in Weaviate

* Update Documentation & Code Style

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2022-07-27 10:07:13 +02:00

126 lines
4.5 KiB
Python

import uuid
import numpy as np
import pytest
from haystack.schema import Document
from ..conftest import get_document_store
embedding_dim = 768
def get_uuid():
return str(uuid.uuid4())
DOCUMENTS = [
{"content": "text1", "id": "not a correct uuid", "key": "a"},
{"content": "text2", "id": get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)},
{"content": "text3", "id": get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)},
{"content": "text4", "id": get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)},
{"content": "text5", "id": get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)},
]
DOCUMENTS_XS = [
# current "dict" format for a document
{
"content": "My name is Carla and I live in Berlin",
"id": get_uuid(),
"meta": {"metafield": "test1", "name": "filename1"},
"embedding": np.random.rand(embedding_dim).astype(np.float32),
},
# meta_field at the top level for backward compatibility
{
"content": "My name is Paul and I live in New York",
"id": get_uuid(),
"metafield": "test2",
"name": "filename2",
"embedding": np.random.rand(embedding_dim).astype(np.float32),
},
# Document object for a doc
Document(
content="My name is Christelle and I live in Paris",
id=get_uuid(),
meta={"metafield": "test3", "name": "filename3"},
embedding=np.random.rand(embedding_dim).astype(np.float32),
),
]
@pytest.fixture(params=["weaviate"])
def document_store_with_docs(request, tmp_path):
document_store = get_document_store(request.param, tmp_path=tmp_path)
document_store.write_documents(DOCUMENTS_XS)
yield document_store
document_store.delete_index(document_store.index)
@pytest.fixture(params=["weaviate"])
def document_store(request, tmp_path):
document_store = get_document_store(request.param, tmp_path=tmp_path)
yield document_store
document_store.delete_index(document_store.index)
@pytest.mark.weaviate
@pytest.mark.parametrize("document_store", ["weaviate"], indirect=True)
@pytest.mark.parametrize("batch_size", [2])
def test_weaviate_write_docs(document_store, batch_size):
# Write in small batches
for i in range(0, len(DOCUMENTS), batch_size):
document_store.write_documents(DOCUMENTS[i : i + batch_size])
documents_indexed = document_store.get_all_documents()
assert len(documents_indexed) == len(DOCUMENTS)
documents_indexed = document_store.get_all_documents(batch_size=batch_size)
assert len(documents_indexed) == len(DOCUMENTS)
@pytest.mark.weaviate
@pytest.mark.parametrize("document_store_with_docs", ["weaviate"], indirect=True)
def test_query_by_embedding(document_store_with_docs):
docs = document_store_with_docs.query_by_embedding(np.random.rand(embedding_dim).astype(np.float32))
assert len(docs) == 3
docs = document_store_with_docs.query_by_embedding(np.random.rand(embedding_dim).astype(np.float32), top_k=1)
assert len(docs) == 1
docs = document_store_with_docs.query_by_embedding(
np.random.rand(embedding_dim).astype(np.float32), filters={"name": ["filename2"]}
)
assert len(docs) == 1
@pytest.mark.weaviate
@pytest.mark.parametrize("document_store_with_docs", ["weaviate"], indirect=True)
def test_query(document_store_with_docs):
query_text = "My name is Carla and I live in Berlin"
docs = document_store_with_docs.query(query_text)
assert len(docs) == 3
# BM25 retrieval WITH filters is not yet supported as of Weaviate v1.14.1
with pytest.raises(Exception):
docs = document_store_with_docs.query(query_text, filters={"name": ["filename2"]})
docs = document_store_with_docs.query(filters={"name": ["filename2"]})
assert len(docs) == 1
docs = document_store_with_docs.query(filters={"content": [query_text.lower()]})
assert len(docs) == 1
docs = document_store_with_docs.query(filters={"content": ["live"]})
assert len(docs) == 3
@pytest.mark.weaviate
def test_get_all_documents_unaffected_by_QUERY_MAXIMUM_RESULTS(document_store_with_docs, monkeypatch):
"""
Ensure `get_all_documents` works no matter the value of QUERY_MAXIMUM_RESULTS
see https://github.com/deepset-ai/haystack/issues/2517
"""
monkeypatch.setattr(document_store_with_docs, "get_document_count", lambda **kwargs: 13_000)
docs = document_store_with_docs.get_all_documents()
assert len(docs) == 3