haystack/test/conftest.py
Tanay Soni 337376c81d Add batch_size and generators to document stores. (#733)
* Add batch update of embeddings in document stores

* Resolve merge conflict

* Remove document ordering dependency in tests

* Adjust index buffer size for tests

* Adjust ES Scroll Slice

* Use generator for document store pagination

* Add pagination for InMemoryDocumentStore

* Fix missing index parameter in FAISS update_embeddings()

* Fix FAISS update_embeddings()

* Update FAISS tests

* Update eval tests

* Revert code formatting change

* Fix document count in FAISS update embeddings

* Fix vector_ids reset in SQLDocumentStore

* Update doctrings

* Update docstring
2021-01-21 16:00:08 +01:00

270 lines
10 KiB
Python

import subprocess
import time
from subprocess import run
from sys import platform
import pytest
import requests
from elasticsearch import Elasticsearch
from haystack.generator.transformers import RAGenerator, RAGeneratorType
from haystack.retriever.sparse import ElasticsearchFilterOnlyRetriever, ElasticsearchRetriever, TfidfRetriever
from haystack.retriever.dense import DensePassageRetriever, EmbeddingRetriever
from haystack import Document
from haystack.document_store.elasticsearch import ElasticsearchDocumentStore
from haystack.document_store.faiss import FAISSDocumentStore
from haystack.document_store.memory import InMemoryDocumentStore
from haystack.document_store.sql import SQLDocumentStore
from haystack.reader.farm import FARMReader
from haystack.reader.transformers import TransformersReader
from haystack.summarizer.transformers import TransformersSummarizer
def pytest_collection_modifyitems(items):
for item in items:
if "generator" in item.nodeid:
item.add_marker(pytest.mark.generator)
elif "summarizer" in item.nodeid:
item.add_marker(pytest.mark.summarizer)
elif "tika" in item.nodeid:
item.add_marker(pytest.mark.tika)
elif "elasticsearch" in item.nodeid:
item.add_marker(pytest.mark.elasticsearch)
elif "pipeline" in item.nodeid:
item.add_marker(pytest.mark.pipeline)
elif "slow" in item.nodeid:
item.add_marker(pytest.mark.slow)
@pytest.fixture(scope="session")
def elasticsearch_fixture():
# test if a ES cluster is already running. If not, download and start an ES instance locally.
try:
client = Elasticsearch(hosts=[{"host": "localhost", "port": "9200"}])
client.info()
except:
print("Starting Elasticsearch ...")
status = subprocess.run(
['docker rm haystack_test_elastic'],
shell=True
)
status = subprocess.run(
['docker run -d --name haystack_test_elastic -p 9200:9200 -e "discovery.type=single-node" elasticsearch:7.9.2'],
shell=True
)
if status.returncode:
raise Exception(
"Failed to launch Elasticsearch. Please check docker container logs.")
time.sleep(30)
@pytest.fixture(scope="session")
def tika_fixture():
try:
tika_url = "http://localhost:9998/tika"
ping = requests.get(tika_url)
if ping.status_code != 200:
raise Exception(
"Unable to connect Tika. Please check tika endpoint {0}.".format(tika_url))
except:
print("Starting Tika ...")
status = subprocess.run(
['docker run -d --name tika -p 9998:9998 apache/tika:1.24.1'],
shell=True
)
if status.returncode:
raise Exception(
"Failed to launch Tika. Please check docker container logs.")
time.sleep(30)
@pytest.fixture(scope="session")
def xpdf_fixture(tika_fixture):
verify_installation = run(["pdftotext"], shell=True)
if verify_installation.returncode == 127:
if platform.startswith("linux"):
platform_id = "linux"
sudo_prefix = "sudo"
elif platform.startswith("darwin"):
platform_id = "mac"
# For Mac, generally sudo need password in interactive console.
# But most of the cases current user already have permission to copy to /user/local/bin.
# Hence removing sudo requirement for Mac.
sudo_prefix = ""
else:
raise Exception(
"""Currently auto installation of pdftotext is not supported on {0} platform """.format(platform)
)
commands = """ wget --no-check-certificate https://dl.xpdfreader.com/xpdf-tools-{0}-4.02.tar.gz &&
tar -xvf xpdf-tools-{0}-4.02.tar.gz &&
{1} cp xpdf-tools-{0}-4.02/bin64/pdftotext /usr/local/bin""".format(platform_id, sudo_prefix)
run([commands], shell=True)
verify_installation = run(["pdftotext -v"], shell=True)
if verify_installation.returncode == 127:
raise Exception(
"""pdftotext is not installed. It is part of xpdf or poppler-utils software suite.
You can download for your OS from here: https://www.xpdfreader.com/download.html."""
)
@pytest.fixture(scope="module")
def rag_generator():
return RAGenerator(
model_name_or_path="facebook/rag-token-nq",
generator_type=RAGeneratorType.TOKEN
)
@pytest.fixture(scope="module")
def summarizer():
return TransformersSummarizer(
model_name_or_path="google/pegasus-xsum",
use_gpu=-1
)
@pytest.fixture(scope="module")
def test_docs_xs():
return [
# current "dict" format for a document
{"text": "My name is Carla and I live in Berlin", "meta": {"meta_field": "test1", "name": "filename1"}},
# meta_field at the top level for backward compatibility
{"text": "My name is Paul and I live in New York", "meta_field": "test2", "name": "filename2"},
# Document object for a doc
Document(text="My name is Christelle and I live in Paris", meta={"meta_field": "test3", "name": "filename3"})
]
@pytest.fixture(params=["farm", "transformers"], scope="module")
def reader(request):
if request.param == "farm":
return FARMReader(
model_name_or_path="distilbert-base-uncased-distilled-squad",
use_gpu=False,
top_k_per_sample=5,
num_processes=0
)
if request.param == "transformers":
return TransformersReader(
model_name_or_path="distilbert-base-uncased-distilled-squad",
tokenizer="distilbert-base-uncased",
use_gpu=-1
)
# TODO Fix bug in test_no_answer_output when using
# @pytest.fixture(params=["farm", "transformers"])
@pytest.fixture(params=["farm"], scope="module")
def no_answer_reader(request):
if request.param == "farm":
return FARMReader(
model_name_or_path="deepset/roberta-base-squad2",
use_gpu=False,
top_k_per_sample=5,
no_ans_boost=0,
return_no_answer=True,
num_processes=0
)
if request.param == "transformers":
return TransformersReader(
model_name_or_path="deepset/roberta-base-squad2",
tokenizer="deepset/roberta-base-squad2",
use_gpu=-1,
top_k_per_candidate=5
)
@pytest.fixture(scope="module")
def prediction(reader, test_docs_xs):
docs = [Document.from_dict(d) if isinstance(d, dict) else d for d in test_docs_xs]
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=5)
return prediction
@pytest.fixture(scope="module")
def no_answer_prediction(no_answer_reader, test_docs_xs):
docs = [Document.from_dict(d) if isinstance(d, dict) else d for d in test_docs_xs]
prediction = no_answer_reader.predict(query="What is the meaning of life?", documents=docs, top_k=5)
return prediction
@pytest.fixture(params=["es_filter_only", "elasticsearch", "dpr", "embedding", "tfidf"])
def retriever(request, document_store):
return get_retriever(request.param, document_store)
@pytest.fixture(params=["es_filter_only", "elasticsearch", "dpr", "embedding", "tfidf"])
def retriever_with_docs(request, document_store_with_docs):
return get_retriever(request.param, document_store_with_docs)
def get_retriever(retriever_type, document_store):
if retriever_type == "dpr":
retriever = DensePassageRetriever(document_store=document_store,
query_embedding_model="facebook/dpr-question_encoder-single-nq-base",
passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
use_gpu=False, embed_title=True)
elif retriever_type == "tfidf":
return TfidfRetriever(document_store=document_store)
elif retriever_type == "embedding":
retriever = EmbeddingRetriever(
document_store=document_store,
embedding_model="deepset/sentence_bert",
use_gpu=False
)
elif retriever_type == "elasticsearch":
retriever = ElasticsearchRetriever(document_store=document_store)
elif retriever_type == "es_filter_only":
retriever = ElasticsearchFilterOnlyRetriever(document_store=document_store)
else:
raise Exception(f"No retriever fixture for '{retriever_type}'")
return retriever
@pytest.fixture(params=["elasticsearch", "faiss", "memory", "sql"])
def document_store_with_docs(request, test_docs_xs):
document_store = get_document_store(request.param)
document_store.write_documents(test_docs_xs)
yield document_store
if request.param == "faiss":
document_store.faiss_index.reset()
@pytest.fixture(params=["elasticsearch", "faiss", "memory", "sql"])
def document_store(request, test_docs_xs):
document_store = get_document_store(request.param)
yield document_store
if request.param == "faiss":
document_store.faiss_index.reset()
def get_document_store(document_store_type, embedding_field="embedding"):
if document_store_type == "sql":
document_store = SQLDocumentStore(url="sqlite://")
elif document_store_type == "memory":
document_store = InMemoryDocumentStore(return_embedding=True, embedding_field=embedding_field)
elif document_store_type == "elasticsearch":
# make sure we start from a fresh index
client = Elasticsearch()
client.indices.delete(index='haystack_test*', ignore=[404])
document_store = ElasticsearchDocumentStore(
index="haystack_test", return_embedding=True, embedding_field=embedding_field
)
elif document_store_type == "faiss":
document_store = FAISSDocumentStore(
sql_url="sqlite://",
return_embedding=True,
embedding_field=embedding_field,
)
return document_store
else:
raise Exception(f"No document store fixture for '{document_store_type}'")
return document_store