haystack/test/nodes/test_label_generator.py
Vladimir Blagojevic b13c32eb9c
Add GPL API docs, unit tests update (#2634)
* Update test_label_generator.py

* GPL increase default batch size to 16

* GPL - API docs

* GPL - split unit tests

* Make devs aware of multilingual GPL

* Create separate train/save test

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2022-06-10 05:25:28 -04:00

135 lines
5.2 KiB
Python

from pathlib import Path
import pytest
from haystack.document_stores import BaseDocumentStore
from haystack.nodes import QuestionGenerator, EmbeddingRetriever, PseudoLabelGenerator
from test.conftest import DOCS_WITH_EMBEDDINGS
@pytest.mark.generator
@pytest.mark.integration
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["embedding_sbert"], indirect=True)
def test_pseudo_label_generator(
document_store: BaseDocumentStore,
retriever: EmbeddingRetriever,
question_generator: QuestionGenerator,
tmp_path: Path,
):
document_store.write_documents(DOCS_WITH_EMBEDDINGS)
psg = PseudoLabelGenerator(question_generator, retriever)
train_examples = []
output, pipe_id = psg.run(documents=document_store.get_all_documents())
assert "gpl_labels" in output
for item in output["gpl_labels"]:
assert "question" in item and "pos_doc" in item and "neg_doc" in item and "score" in item
train_examples.append(item)
assert len(train_examples) > 0
@pytest.mark.slow
@pytest.mark.generator
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["embedding_sbert"], indirect=True)
def test_pseudo_label_generator_batch(
document_store: BaseDocumentStore,
retriever: EmbeddingRetriever,
question_generator: QuestionGenerator,
tmp_path: Path,
):
document_store.write_documents(DOCS_WITH_EMBEDDINGS)
psg = PseudoLabelGenerator(question_generator, retriever)
train_examples = []
output, pipe_id = psg.run_batch(documents=document_store.get_all_documents())
assert "gpl_labels" in output
for item in output["gpl_labels"]:
assert "question" in item and "pos_doc" in item and "neg_doc" in item and "score" in item
train_examples.append(item)
assert len(train_examples) > 0
@pytest.mark.generator
@pytest.mark.integration
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["embedding_sbert"], indirect=True)
def test_pseudo_label_generator_using_question_document_pairs(
document_store: BaseDocumentStore, retriever: EmbeddingRetriever, tmp_path: Path
):
document_store.write_documents(DOCS_WITH_EMBEDDINGS)
docs = [
{
"question": "What is the capital of Germany?",
"document": "Berlin is the capital and largest city of Germany by both area and population.",
},
{
"question": "What is the largest city in Germany by population and area?",
"document": "Berlin is the capital and largest city of Germany by both area and population.",
},
]
psg = PseudoLabelGenerator(docs, retriever)
train_examples = []
output, pipe_id = psg.run(documents=document_store.get_all_documents())
assert "gpl_labels" in output
for item in output["gpl_labels"]:
assert "question" in item and "pos_doc" in item and "neg_doc" in item and "score" in item
train_examples.append(item)
assert len(train_examples) > 0
@pytest.mark.slow
@pytest.mark.generator
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["embedding_sbert"], indirect=True)
def test_pseudo_label_generator_using_question_document_pairs_batch(
document_store: BaseDocumentStore, retriever: EmbeddingRetriever, tmp_path: Path
):
document_store.write_documents(DOCS_WITH_EMBEDDINGS)
docs = [
{
"question": "What is the capital of Germany?",
"document": "Berlin is the capital and largest city of Germany by both area and population.",
},
{
"question": "What is the largest city in Germany by population and area?",
"document": "Berlin is the capital and largest city of Germany by both area and population.",
},
]
psg = PseudoLabelGenerator(docs, retriever)
train_examples = []
output, pipe_id = psg.run_batch(documents=document_store.get_all_documents())
assert "gpl_labels" in output
for item in output["gpl_labels"]:
assert "question" in item and "pos_doc" in item and "neg_doc" in item and "score" in item
train_examples.append(item)
assert len(train_examples) > 0
@pytest.mark.slow
@pytest.mark.generator
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["embedding_sbert"], indirect=True)
def test_training_and_save(retriever: EmbeddingRetriever, tmp_path: Path):
train_examples = [
{
"question": "What is the capital of Germany?",
"pos_doc": "Berlin is the capital and largest city of Germany by both area and population.",
"neg_doc": "The capital of Germany is the city state of Berlin.",
"score": -2.2788997,
},
{
"question": "What is the largest city in Germany by population and area?",
"pos_doc": "Berlin is the capital and largest city of Germany by both area and population.",
"neg_doc": "The capital of Germany is the city state of Berlin.",
"score": 7.0911007,
},
]
retriever.train(train_examples)
retriever.save(tmp_path)