Malte Pietsch b28dd823ef
Improve open api spec (#1700)
* improve open api spec

* move to automatic generation of better operationIDs
2021-11-11 09:40:58 +01:00

72 lines
2.3 KiB
Python

import logging
import time
from pathlib import Path
from fastapi import APIRouter
from haystack.pipelines.base import Pipeline
from rest_api.config import PIPELINE_YAML_PATH, QUERY_PIPELINE_NAME
from rest_api.config import LOG_LEVEL, CONCURRENT_REQUEST_PER_WORKER
from rest_api.schema import QueryRequest, QueryResponse
from rest_api.controller.utils import RequestLimiter
logging.getLogger("haystack").setLevel(LOG_LEVEL)
logger = logging.getLogger("haystack")
from pydantic import BaseConfig
BaseConfig.arbitrary_types_allowed = True
router = APIRouter()
PIPELINE = Pipeline.load_from_yaml(Path(PIPELINE_YAML_PATH), pipeline_name=QUERY_PIPELINE_NAME)
# TODO make this generic for other pipelines with different naming
RETRIEVER = PIPELINE.get_node(name="Retriever")
DOCUMENT_STORE = RETRIEVER.document_store if RETRIEVER else None
logging.info(f"Loaded pipeline nodes: {PIPELINE.graph.nodes.keys()}")
concurrency_limiter = RequestLimiter(CONCURRENT_REQUEST_PER_WORKER)
@router.get("/initialized")
def check_status():
"""
This endpoint can be used during startup to understand if the
server is ready to take any requests, or is still loading.
The recommended approach is to call this endpoint with a short timeout,
like 500ms, and in case of no reply, consider the server busy.
"""
return True
@router.post("/query", response_model=QueryResponse, response_model_exclude_none=True)
def query(request: QueryRequest):
with concurrency_limiter.run():
result = _process_request(PIPELINE, request)
return result
def _process_request(pipeline, request) -> QueryResponse:
start_time = time.time()
params = request.params or {}
params["Retriever"] = params.get("Retriever", {})
filters = {}
if "filters" in params["Retriever"]: # put filter values into a list and remove filters with null value
for key, values in params["Retriever"]["filters"].items():
if values is None:
continue
if not isinstance(values, list):
values = [values]
filters[key] = values
params["Retriever"]["filters"] = filters
result = pipeline.run(query=request.query, params=params)
end_time = time.time()
logger.info({"request": request.dict(), "response": result, "time": f"{(end_time - start_time):.2f}"})
return result