mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-02-07 23:42:21 +00:00
77 lines
3.1 KiB
Plaintext
77 lines
3.1 KiB
Plaintext
---
|
||
title: "PDFMinerToDocument"
|
||
id: pdfminertodocument
|
||
slug: "/pdfminertodocument"
|
||
description: "A component that converts complex PDF files to documents using pdfminer arguments."
|
||
---
|
||
|
||
# PDFMinerToDocument
|
||
|
||
A component that converts complex PDF files to documents using pdfminer arguments.
|
||
|
||
<div className="key-value-table">
|
||
|
||
| | |
|
||
| --- | --- |
|
||
| **Most common position in a pipeline** | Before [PreProcessors](../preprocessors.mdx) or right at the beginning of an indexing pipeline |
|
||
| **Mandatory run variables** | `sources`: PDF file paths or [`ByteStream`](../../concepts/data-classes.mdx#bytestream) objects |
|
||
| **Output variables** | `documents`: A list of documents |
|
||
| **API reference** | [Converters](/reference/converters-api) |
|
||
| **GitHub link** | https://github.com/deepset-ai/haystack/blob/main/haystack/components/converters/pdfminer.py |
|
||
|
||
</div>
|
||
|
||
## Overview
|
||
|
||
The `PDFMinerToDocument` component converts PDF files into documents using [PDFMiner](https://pdfminersix.readthedocs.io/en/latest/) extraction tool arguments.
|
||
|
||
You can use it in an indexing pipeline to index the contents of a PDF file in a Document Store. It takes a list of file paths or [`ByteStream`](../../concepts/data-classes.mdx#bytestream)objects as input and outputs the converted result as a list of documents. Optionally, you can attach metadata to the documents through the `meta` input parameter.
|
||
|
||
When initializing the component, you can adjust several parameters to fit your PDF. See the full parameter list and descriptions in our [API reference](/reference/converters-api#pdfminertodocument).
|
||
|
||
## Usage
|
||
|
||
First, install `pdfminer` package to start using this converter:
|
||
|
||
```shell
|
||
pip install pdfminer.six
|
||
```
|
||
|
||
### On its own
|
||
|
||
```python
|
||
from haystack.components.converters import PDFMinerToDocument
|
||
|
||
converter = PDFMinerToDocument()
|
||
results = converter.run(sources=["sample.pdf"], meta={"date_added": datetime.now().isoformat()})
|
||
documents = results["documents"]
|
||
|
||
print(documents[0].content)
|
||
|
||
## 'This is a text from the PDF file.'
|
||
```
|
||
|
||
### In a pipeline
|
||
|
||
```python
|
||
from haystack import Pipeline
|
||
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
||
from haystack.components.converters import PDFMinerToDocument
|
||
from haystack.components.preprocessors import DocumentCleaner
|
||
from haystack.components.preprocessors import DocumentSplitter
|
||
from haystack.components.writers import DocumentWriter
|
||
|
||
document_store = InMemoryDocumentStore()
|
||
|
||
pipeline = Pipeline()
|
||
pipeline.add_component("converter", PDFMinerToDocument())
|
||
pipeline.add_component("cleaner", DocumentCleaner())
|
||
pipeline.add_component("splitter", DocumentSplitter(split_by="sentence", split_length=5))
|
||
pipeline.add_component("writer", DocumentWriter(document_store=document_store))
|
||
pipeline.connect("converter", "cleaner")
|
||
pipeline.connect("cleaner", "splitter")
|
||
pipeline.connect("splitter", "writer")
|
||
|
||
pipeline.run({"converter": {"sources": file_names}})
|
||
```
|