Haystack Bot a471fbfebe
Promote unstable docs for Haystack 2.21 (#10204)
Co-authored-by: vblagoje <458335+vblagoje@users.noreply.github.com>
2025-12-08 20:09:00 +01:00

287 lines
12 KiB
Plaintext

---
title: "OpenAIResponsesChatGenerator"
id: openairesponseschatgenerator
slug: "/openairesponseschatgenerator"
description: "`OpenAIResponsesChatGenerator` enables chat completion using OpenAI's Responses API with support for reasoning models."
---
# OpenAIResponsesChatGenerator
`OpenAIResponsesChatGenerator` enables chat completion using OpenAI's Responses API with support for reasoning models.
<div className="key-value-table">
| | |
| --- | --- |
| **Most common position in a pipeline** | After a [ChatPromptBuilder](../builders/chatpromptbuilder.mdx) |
| **Mandatory init variables** | `api_key`: An OpenAI API key. Can be set with `OPENAI_API_KEY` env var. |
| **Mandatory run variables** | `messages`: A list of [`ChatMessage`](../../concepts/data-classes/chatmessage.mdx) objects representing the chat |
| **Output variables** | `replies`: A list of [`ChatMessage`](../../concepts/data-classes/chatmessage.mdx) objects containing the generated responses |
| **API reference** | [Generators](/reference/generators-api) |
| **GitHub link** | https://github.com/deepset-ai/haystack/blob/main/haystack/components/generators/chat/openai_responses.py |
</div>
## Overview
`OpenAIResponsesChatGenerator` uses OpenAI's Responses API to generate chat completions. It supports gpt-4 and o-series models (reasoning models like o1, o3-mini). The default model is `gpt-5-mini`.
The Responses API is designed for reasoning-capable models and supports features like reasoning summaries, multi-turn conversations with previous response IDs, and structured outputs.
The component requires a list of `ChatMessage` objects to operate. `ChatMessage` is a data class that contains a message, a role (who generated the message, such as `user`, `assistant`, `system`), and optional metadata. See the [usage](#usage) section for examples.
You can pass any parameters valid for the OpenAI Responses API directly to `OpenAIResponsesChatGenerator` using the `generation_kwargs` parameter, both at initialization and to the `run()` method. For more details on the parameters supported by the OpenAI API, refer to the [OpenAI Responses API documentation](https://platform.openai.com/docs/api-reference/responses).
`OpenAIResponsesChatGenerator` can support custom deployments of your OpenAI models through the `api_base_url` init parameter.
### Authentication
`OpenAIResponsesChatGenerator` needs an OpenAI key to work. It uses an `OPENAI_API_KEY` environment variable by default. Otherwise, you can pass an API key at initialization with `api_key` using a [`Secret`](../../concepts/secret-management.mdx):
```python
from haystack.components.generators.chat import OpenAIResponsesChatGenerator
from haystack.utils import Secret
generator = OpenAIResponsesChatGenerator(api_key=Secret.from_token("<your-api-key>"))
```
### Reasoning Support
One of the key features of the Responses API is support for reasoning models. You can configure reasoning behavior using the `reasoning` parameter in `generation_kwargs`:
```python
from haystack.components.generators.chat import OpenAIResponsesChatGenerator
from haystack.dataclasses import ChatMessage
client = OpenAIResponsesChatGenerator(
generation_kwargs={"reasoning": {"effort": "medium", "summary": "auto"}}
)
messages = [ChatMessage.from_user("What's the most efficient sorting algorithm for nearly sorted data?")]
response = client.run(messages)
print(response)
```
The `reasoning` parameter accepts:
- `effort`: Level of reasoning effort - `"low"`, `"medium"`, or `"high"`
- `summary`: How to generate reasoning summaries - `"auto"` or `"generate_summary": True/False`
:::note
OpenAI does not return the actual reasoning tokens, but you can view the summary if enabled. For more details, see the [OpenAI Reasoning documentation](https://platform.openai.com/docs/guides/reasoning).
:::
### Multi-turn Conversations
The Responses API supports multi-turn conversations using `previous_response_id`. You can pass the response ID from a previous turn to maintain conversation context:
```python
from haystack.components.generators.chat import OpenAIResponsesChatGenerator
from haystack.dataclasses import ChatMessage
client = OpenAIResponsesChatGenerator()
# First turn
messages = [ChatMessage.from_user("What's quantum computing?")]
response = client.run(messages)
response_id = response["replies"][0].meta.get("id")
# Second turn - reference previous response
messages = [ChatMessage.from_user("Can you explain that in simpler terms?")]
response = client.run(messages, generation_kwargs={"previous_response_id": response_id})
```
### Structured Output
`OpenAIResponsesChatGenerator` supports structured output generation through the `text_format` and `text` parameters in `generation_kwargs`:
- **`text_format`**: Pass a Pydantic model to define the structure
- **`text`**: Pass a JSON schema directly
**Using a Pydantic model**:
```python
from pydantic import BaseModel
from haystack.components.generators.chat import OpenAIResponsesChatGenerator
from haystack.dataclasses import ChatMessage
class BookInfo(BaseModel):
title: str
author: str
year: int
genre: str
client = OpenAIResponsesChatGenerator(
model="gpt-4o",
generation_kwargs={"text_format": BookInfo}
)
response = client.run(messages=[
ChatMessage.from_user(
"Extract book information: '1984 by George Orwell, published in 1949, is a dystopian novel.'"
)
])
print(response["replies"][0].text)
```
**Using a JSON schema**:
```python
from haystack.components.generators.chat import OpenAIResponsesChatGenerator
from haystack.dataclasses import ChatMessage
json_schema = {
"format": {
"type": "json_schema",
"name": "BookInfo",
"strict": True,
"schema": {
"type": "object",
"properties": {
"title": {"type": "string"},
"author": {"type": "string"},
"year": {"type": "integer"},
"genre": {"type": "string"}
},
"required": ["title", "author", "year", "genre"],
"additionalProperties": False
}
}
}
client = OpenAIResponsesChatGenerator(
model="gpt-4o",
generation_kwargs={"text": json_schema}
)
response = client.run(messages=[
ChatMessage.from_user(
"Extract book information: '1984 by George Orwell, published in 1949, is a dystopian novel.'"
)
])
print(response["replies"][0].text)
```
:::info Model Compatibility and Limitations
- Both Pydantic models and JSON schemas are supported for latest models starting from GPT-4o.
- If both `text_format` and `text` are provided, `text_format` takes precedence and the JSON schema passed to `text` is ignored.
- Streaming is not supported when using structured outputs.
- Older models only support basic JSON mode through `{"type": "json_object"}`. For details, see [OpenAI JSON mode documentation](https://platform.openai.com/docs/guides/structured-outputs#json-mode).
- For complete information, check the [OpenAI Structured Outputs documentation](https://platform.openai.com/docs/guides/structured-outputs).
:::
### Tool Support
`OpenAIResponsesChatGenerator` supports function calling through the `tools` parameter. It accepts flexible tool configurations:
- **Haystack Tool objects and Toolsets**: Pass Haystack `Tool` objects or `Toolset` objects, including mixed lists of both
- **OpenAI/MCP tool definitions**: Pass pre-defined OpenAI or MCP tool definitions as dictionaries
Note that you cannot mix Haystack tools and OpenAI/MCP tools in the same call - choose one format or the other.
```python
from haystack.tools import Tool
from haystack.components.generators.chat import OpenAIResponsesChatGenerator
from haystack.dataclasses import ChatMessage
def get_weather(city: str) -> str:
"""Get weather information for a city."""
return f"Weather in {city}: Sunny, 22°C"
weather_tool = Tool(
name="get_weather",
description="Get current weather for a city",
function=get_weather,
parameters={"type": "object", "properties": {"city": {"type": "string"}}}
)
generator = OpenAIResponsesChatGenerator(tools=[weather_tool])
messages = [ChatMessage.from_user("What's the weather in Paris?")]
response = generator.run(messages)
```
You can control strict schema adherence with the `tools_strict` parameter. When set to `True` (default is `False`), the model will follow the tool schema exactly. Note that the Responses API has its own strictness enforcement mechanisms independent of this parameter.
For more details on working with tools, see the [Tool](../../tools/tool.mdx) and [Toolset](../../tools/toolset.mdx) documentation.
### Streaming
You can stream output as it's generated. Pass a callback to `streaming_callback`. Use the built-in `print_streaming_chunk` to print text tokens and tool events (tool calls and tool results).
```python
from haystack.components.generators.utils import print_streaming_chunk
## Configure any `Generator` or `ChatGenerator` with a streaming callback
component = SomeGeneratorOrChatGenerator(streaming_callback=print_streaming_chunk)
## If this is a `ChatGenerator`, pass a list of messages:
## from haystack.dataclasses import ChatMessage
## component.run([ChatMessage.from_user("Your question here")])
## If this is a (non-chat) `Generator`, pass a prompt:
## component.run({"prompt": "Your prompt here"})
```
:::info
Streaming works only with a single response. If a provider supports multiple candidates, set `n=1`.
:::
See our [Streaming Support](guides-to-generators/choosing-the-right-generator.mdx#streaming-support) docs to learn more how `StreamingChunk` works and how to write a custom callback.
Give preference to `print_streaming_chunk` by default. Write a custom callback only if you need a specific transport (for example, SSE/WebSocket) or custom UI formatting.
## Usage
### On its own
Here is an example of using `OpenAIResponsesChatGenerator` independently with reasoning and streaming:
```python
from haystack.dataclasses import ChatMessage
from haystack.components.generators.chat import OpenAIResponsesChatGenerator
from haystack.components.generators.utils import print_streaming_chunk
client = OpenAIResponsesChatGenerator(
streaming_callback=print_streaming_chunk,
generation_kwargs={"reasoning": {"effort": "high", "summary": "auto"}}
)
response = client.run(
[ChatMessage.from_user("Solve this logic puzzle: If all roses are flowers and some flowers fade quickly, can we conclude that some roses fade quickly?")]
)
print(response["replies"][0].reasoning) # Access reasoning summary if available
```
### In a pipeline
This example shows a pipeline that uses `ChatPromptBuilder` to create dynamic prompts and `OpenAIResponsesChatGenerator` with reasoning enabled to generate explanations of complex topics:
```python
from haystack.components.builders import ChatPromptBuilder
from haystack.components.generators.chat import OpenAIResponsesChatGenerator
from haystack.dataclasses import ChatMessage
from haystack import Pipeline
prompt_builder = ChatPromptBuilder()
llm = OpenAIResponsesChatGenerator(
generation_kwargs={"reasoning": {"effort": "low", "summary": "auto"}}
)
pipe = Pipeline()
pipe.add_component("prompt_builder", prompt_builder)
pipe.add_component("llm", llm)
pipe.connect("prompt_builder.prompt", "llm.messages")
topic = "quantum computing"
messages = [
ChatMessage.from_system("You are a helpful assistant that explains complex topics clearly."),
ChatMessage.from_user("Explain {{topic}} in simple terms")
]
result = pipe.run(data={
"prompt_builder": {
"template_variables": {"topic": topic},
"template": messages
}
})
print(result)
```