Haystack Bot a471fbfebe
Promote unstable docs for Haystack 2.21 (#10204)
Co-authored-by: vblagoje <458335+vblagoje@users.noreply.github.com>
2025-12-08 20:09:00 +01:00

125 lines
5.9 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: "TopPSampler"
id: toppsampler
slug: "/toppsampler"
description: "Uses nucleus sampling to filter documents."
---
# TopPSampler
Uses nucleus sampling to filter documents.
<div className="key-value-table">
| | |
| --- | --- |
| **Most common position in a pipeline** | After a [Ranker](../rankers.mdx) |
| **Mandatory init variables** | `top_p`: A float between 0 and 1 representing the cumulative probability threshold for document selection |
| **Mandatory run variables** | `documents`: A list of documents |
| **Output variables** | `documents`: A list of documents |
| **API reference** | [Samplers](/reference/samplers-api) |
| **GitHub link** | https://github.com/deepset-ai/haystack/blob/main/haystack/components/samplers/top_p.py |
</div>
## Overview
Top-P (nucleus) sampling is a method that helps identify and select a subset of documents based on their cumulative probabilities. Instead of choosing a fixed number of documents, this method focuses on a specified percentage of the highest cumulative probabilities within a list of documents. To put it simply, `TopPSampler` provides a way to efficiently select the most relevant documents based on their similarity to a given query.
The practical goal of the `TopPSampler` is to return a list of documents that, in sum, have a score larger than the `top_p` value. So, for example, when `top_p` is set to a high value, more documents will be returned, which can result in more varied outputs. The value is typically set between 0 and 1. By default, the component uses documents' `score` fields to look at the similarity scores.
The components `run()` method takes in a set of documents, calculates the similarity scores between the query and the documents, and then filters the documents based on the cumulative probability of these scores.
## Usage
### On its own
```python
from haystack import Document
from haystack.components.samplers import TopPSampler
sampler = TopPSampler(top_p=0.99, score_field="similarity_score")
docs = [
Document(content="Berlin", meta={"similarity_score": -10.6}),
Document(content="Belgrade", meta={"similarity_score": -8.9}),
Document(content="Sarajevo", meta={"similarity_score": -4.6}),
]
output = sampler.run(documents=docs)
docs = output["documents"]
print(docs)
```
### In a pipeline
To best understand how can you use a `TopPSampler` and which components to pair it with, explore the following example.
```python
# import necessary dependencies
from haystack import Pipeline
from haystack.components.builders import ChatPromptBuilder
from haystack.components.fetchers import LinkContentFetcher
from haystack.components.converters import HTMLToDocument
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.components.preprocessors import DocumentSplitter
from haystack.components.rankers import SentenceTransformersSimilarityRanker
from haystack.components.routers.file_type_router import FileTypeRouter
from haystack.components.samplers import TopPSampler
from haystack.components.websearch import SerperDevWebSearch
from haystack.utils import Secret
from haystack.dataclasses import ChatMessage
# initialize the components
web_search = SerperDevWebSearch(
api_key=Secret.from_token("<your-api-key>"),
top_k=10
)
lcf = LinkContentFetcher()
html_converter = HTMLToDocument()
router = FileTypeRouter(["text/html", "application/pdf", "application/octet-stream"])
# ChatPromptBuilder uses a different template format with ChatMessage
template = [
ChatMessage.from_user("Given these paragraphs below: \n {% for doc in documents %}{{ doc.content }}{% endfor %}\n\nAnswer the question: {{ query }}")
]
# set required_variables to avoid warnings in multi-branch pipelines
prompt_builder = ChatPromptBuilder(template=template, required_variables=["documents", "query"])
# The Ranker plays an important role, as it will assign the scores to the top 10 found documents based on our query. We will need these scores to work with the TopPSampler.
similarity_ranker = SentenceTransformersSimilarityRanker(top_k=10)
splitter = DocumentSplitter()
# We are setting the top_p parameter to 0.95. This will help identify the most relevant documents to our query.
top_p_sampler = TopPSampler(top_p=0.95)
llm = OpenAIChatGenerator(api_key=Secret.from_token("<your-api-key>"))
# create the pipeline and add the components to it
pipe = Pipeline()
pipe.add_component("search", web_search)
pipe.add_component("fetcher", lcf)
pipe.add_component("router", router)
pipe.add_component("converter", html_converter)
pipe.add_component("splitter", splitter)
pipe.add_component("ranker", similarity_ranker)
pipe.add_component("sampler", top_p_sampler)
pipe.add_component("prompt_builder", prompt_builder)
pipe.add_component("llm", llm)
# Arrange pipeline components in the order you need them. If a component has more than one inputs or outputs, indicate which input you want to connect to which output using the format ("component_name.output_name", "component_name, input_name").
pipe.connect("search.links", "fetcher.urls")
pipe.connect("fetcher.streams", "router.sources")
pipe.connect("router.text/html", "converter.sources")
pipe.connect("converter.documents", "splitter.documents")
pipe.connect("splitter.documents", "ranker.documents")
pipe.connect("ranker.documents", "sampler.documents")
pipe.connect("sampler.documents", "prompt_builder.documents")
pipe.connect("prompt_builder.prompt", "llm.messages")
# run the pipeline
question = "Why are cats afraid of cucumbers?"
query_dict = {"query": question}
result = pipe.run(data={"search": query_dict, "prompt_builder": query_dict, "ranker": query_dict})
print(result)
```