Timo Moeller 837dea4e6d
Integrate sentence transformers into benchmarks (#843)
* Integrate sentence transformers into benchmarks

* Add doc store asserts

* switch data downloads from s3 client to https. add license info

* Fix mypy, revert config

Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-04-09 17:24:16 +02:00

140 lines
6.1 KiB
Python

import os
from haystack.document_store.sql import SQLDocumentStore
from haystack.document_store.memory import InMemoryDocumentStore
from haystack.document_store.elasticsearch import Elasticsearch, ElasticsearchDocumentStore
from haystack.document_store.faiss import FAISSDocumentStore
from haystack.retriever.sparse import ElasticsearchRetriever, TfidfRetriever
from haystack.retriever.dense import DensePassageRetriever, EmbeddingRetriever
from haystack.reader.farm import FARMReader
from haystack.reader.transformers import TransformersReader
from farm.file_utils import http_get
import logging
import subprocess
import time
import json
from typing import Union
from pathlib import Path
logger = logging.getLogger(__name__)
reader_models = ["deepset/roberta-base-squad2", "deepset/minilm-uncased-squad2", "deepset/bert-base-cased-squad2", "deepset/bert-large-uncased-whole-word-masking-squad2", "deepset/xlm-roberta-large-squad2"]
reader_types = ["farm"]
doc_index = "eval_document"
label_index = "label"
def get_document_store(document_store_type, similarity='dot_product'):
""" TODO This method is taken from test/conftest.py but maybe should be within Haystack.
Perhaps a class method of DocStore that just takes string for type of DocStore"""
if document_store_type == "sql":
if os.path.exists("haystack_test.db"):
os.remove("haystack_test.db")
document_store = SQLDocumentStore(url="sqlite:///haystack_test.db")
assert document_store.get_document_count() == 0
elif document_store_type == "memory":
document_store = InMemoryDocumentStore()
elif document_store_type == "elasticsearch":
# make sure we start from a fresh index
client = Elasticsearch()
client.indices.delete(index='haystack_test*', ignore=[404])
document_store = ElasticsearchDocumentStore(index="eval_document", similarity=similarity, timeout=3000)
assert document_store.get_document_count(index="eval_document") == 0
elif document_store_type in("faiss_flat", "faiss_hnsw"):
if document_store_type == "faiss_flat":
index_type = "Flat"
elif document_store_type == "faiss_hnsw":
index_type = "HNSW"
status = subprocess.run(
['docker rm -f haystack-postgres'],
shell=True)
time.sleep(1)
status = subprocess.run(
['docker run --name haystack-postgres -p 5432:5432 -e POSTGRES_PASSWORD=password -d postgres'],
shell=True)
time.sleep(6)
status = subprocess.run(
['docker exec -it haystack-postgres psql -U postgres -c "CREATE DATABASE haystack;"'], shell=True)
time.sleep(1)
document_store = FAISSDocumentStore(sql_url="postgresql://postgres:password@localhost:5432/haystack",
faiss_index_factory_str=index_type,
similarity=similarity)
assert document_store.get_document_count() == 0
else:
raise Exception(f"No document store fixture for '{document_store_type}'")
return document_store
def get_retriever(retriever_name, doc_store):
if retriever_name == "elastic":
return ElasticsearchRetriever(doc_store)
if retriever_name == "tfidf":
return TfidfRetriever(doc_store)
if retriever_name == "dpr":
return DensePassageRetriever(document_store=doc_store,
query_embedding_model="facebook/dpr-question_encoder-single-nq-base",
passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
use_gpu=True,
use_fast_tokenizers=False)
if retriever_name == "sentence_transformers":
return EmbeddingRetriever(document_store=doc_store,
embedding_model="nq-distilbert-base-v1",
use_gpu=True,
model_format="sentence_transformers")
def get_reader(reader_name, reader_type, max_seq_len=384):
reader_class = None
if reader_type == "farm":
reader_class = FARMReader
elif reader_type == "transformers":
reader_class = TransformersReader
return reader_class(reader_name, top_k_per_candidate=4, max_seq_len=max_seq_len)
def index_to_doc_store(doc_store, docs, retriever, labels=None):
doc_store.write_documents(docs, doc_index)
if labels:
doc_store.write_labels(labels, index=label_index)
# these lines are not run if the docs.embedding field is already populated with precomputed embeddings
# See the prepare_data() fn in the retriever benchmark script
if callable(getattr(retriever, "embed_passages", None)) and docs[0].embedding is None:
doc_store.update_embeddings(retriever, index=doc_index)
def load_config(config_filename, ci):
conf = json.load(open(config_filename))
if ci:
params = conf["params"]["ci"]
else:
params = conf["params"]["full"]
filenames = conf["filenames"]
max_docs = max(params["n_docs_options"])
n_docs_keys = sorted([int(x) for x in list(filenames["embeddings_filenames"])])
for k in n_docs_keys:
if max_docs <= k:
filenames["embeddings_filenames"] = [filenames["embeddings_filenames"][str(k)]]
filenames["filename_negative"] = filenames["filenames_negative"][str(k)]
break
return params, filenames
def download_from_url(url: str, filepath:Union[str, Path]):
"""
Download from a url to a local file. Skip already existing files.
:param url: Url
:param filepath: local path where the url content shall be stored
:return: local path of the downloaded file
"""
logger.info(f"Downloading {url}")
# Create local folder
folder, filename = os.path.split(filepath)
if not os.path.exists(folder):
os.makedirs(folder)
# Download file if not present locally
if os.path.exists(filepath):
logger.info(f"Skipping {url} (exists locally)")
else:
logger.info(f"Downloading {url} to {filepath} ")
with open(filepath, "wb") as file:
http_get(url=url, temp_file=file)
return filepath