bogdankostic b8ff1052d4
refactor: Adapt running benchmarks (#5007)
* Generate eval result in separate method

* Adapt benchmarking utils

* Adapt running retriever benchmarks

* Adapt error message

* Adapt running reader benchmarks

* Adapt retriever reader benchmark script

* Adapt running benchmarks script

* Adapt README.md

* Raise error if file doesn't exist

* Raise error if path doesn't exist or is a directory

* minor readme update

* Create separate methods for checking if pipeline contains reader or retriever

* Fix reader pipeline case

---------

Co-authored-by: Darja Fokina <daria.f93@gmail.com>
2023-05-26 18:48:11 +02:00

78 lines
3.3 KiB
Python

from pathlib import Path
from typing import Dict
import argparse
import json
from haystack import Pipeline
from haystack.nodes import BaseRetriever, BaseReader
from haystack.pipelines.config import read_pipeline_config_from_yaml
from utils import prepare_environment, contains_reader, contains_retriever
from reader import benchmark_reader
from retriever import benchmark_retriever
from retriever_reader import benchmark_retriever_reader
def run_benchmark(pipeline_yaml: Path) -> Dict:
"""
Run benchmarking on a given pipeline. Pipeline can be a retriever, reader, or retriever-reader pipeline.
In case of retriever or retriever-reader pipelines, indexing is also benchmarked, so the config file must
contain an indexing pipeline as well.
:param pipeline_yaml: Path to pipeline YAML config. The config file should contain a benchmark_config section where
the following parameters are specified:
- documents_directory: Directory containing files to index.
- labels_file: Path to evaluation set.
- data_url (optional): URL to download the data from. Downloaded data will be stored in
the directory `data/`.
"""
pipeline_config = read_pipeline_config_from_yaml(pipeline_yaml)
benchmark_config = pipeline_config.pop("benchmark_config", {})
# Prepare environment
prepare_environment(pipeline_config, benchmark_config)
labels_file = Path(benchmark_config["labels_file"])
querying_pipeline = Pipeline.load_from_config(pipeline_config, pipeline_name="querying")
pipeline_contains_reader = contains_reader(querying_pipeline)
pipeline_contains_retriever = contains_retriever(querying_pipeline)
# Retriever-Reader pipeline
if pipeline_contains_retriever and pipeline_contains_reader:
documents_dir = Path(benchmark_config["documents_directory"])
indexing_pipeline = Pipeline.load_from_config(pipeline_config, pipeline_name="indexing")
results = benchmark_retriever_reader(indexing_pipeline, querying_pipeline, documents_dir, labels_file)
# Retriever pipeline
elif pipeline_contains_retriever:
documents_dir = Path(benchmark_config["documents_directory"])
indexing_pipeline = Pipeline.load_from_config(pipeline_config, pipeline_name="indexing")
results = benchmark_retriever(indexing_pipeline, querying_pipeline, documents_dir, labels_file)
# Reader pipeline
elif pipeline_contains_reader:
results = benchmark_reader(querying_pipeline, labels_file)
# Unsupported pipeline type
else:
raise ValueError("Pipeline must be a retriever, reader, or retriever-reader pipeline.")
results["config_file"] = pipeline_config
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config", type=str, help="Path to pipeline YAML config.")
parser.add_argument("--output", type=str, help="Path to output file.")
args = parser.parse_args()
config_file = Path(args.config)
output_file = f"{config_file.stem}_results.json" if args.output is None else args.output
results = run_benchmark(config_file)
with open(output_file, "w") as f:
json.dump(results, f, indent=2)