mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-27 10:49:52 +00:00

* add basic telemetry features * change pipeline_config to _component_config * Update Documentation & Code Style * add super().__init__() calls to error classes * make posthog mock work with python 3.7 * Update Documentation & Code Style * update link to docs web page * log exceptions, send event for raised HaystackErrors, refactor Path(CONFIG_PATH) * add comment on send_event in BaseComponent.init() and fix mypy * mock NonPrivateParameters and fix pylint undefined-variable * Update Documentation & Code Style * check model path contains multiple / * add test for writing to file * add test for en-/disable telemetry * Update Documentation & Code Style * merge file deletion methods and ignore pylint global statement * Update Documentation & Code Style * set env variable in demo to activate telemetry * fix mock of HAYSTACK_TELEMETRY_ENABLED * fix mypy and linter * add CI as env variable to execution contexts * remove threading, add test for custom error event * Update Documentation & Code Style * simplify config/log file deletion * add test for final event being sent * force writing config file in test * make test compatible with python 3.7 * switch to posthog production server * Update Documentation & Code Style Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
92 lines
3.6 KiB
Python
Executable File
92 lines
3.6 KiB
Python
Executable File
from haystack.document_stores import ElasticsearchDocumentStore
|
|
|
|
from haystack.nodes import EmbeddingRetriever
|
|
from haystack.utils import launch_es, print_answers, fetch_archive_from_http
|
|
import pandas as pd
|
|
import requests
|
|
import logging
|
|
import subprocess
|
|
import time
|
|
|
|
|
|
def tutorial4_faq_style_qa():
|
|
## "FAQ-Style QA": Utilizing existing FAQs for Question Answering
|
|
|
|
# While *extractive Question Answering* works on pure texts and is therefore more generalizable, there's also a common alternative that utilizes existing FAQ data.
|
|
#
|
|
# Pros:
|
|
# - Very fast at inference time
|
|
# - Utilize existing FAQ data
|
|
# - Quite good control over answers
|
|
#
|
|
# Cons:
|
|
# - Generalizability: We can only answer questions that are similar to existing ones in FAQ
|
|
#
|
|
# In some use cases, a combination of extractive QA and FAQ-style can also be an interesting option.
|
|
launch_es()
|
|
|
|
### Init the DocumentStore
|
|
# In contrast to Tutorial 1 (extractive QA), we:
|
|
#
|
|
# * specify the name of our `text_field` in Elasticsearch that we want to return as an answer
|
|
# * specify the name of our `embedding_field` in Elasticsearch where we'll store the embedding of our question and that is used later for calculating our similarity to the incoming user question
|
|
# * set `excluded_meta_data=["question_emb"]` so that we don't return the huge embedding vectors in our search results
|
|
|
|
document_store = ElasticsearchDocumentStore(
|
|
host="localhost",
|
|
username="",
|
|
password="",
|
|
index="document",
|
|
embedding_field="question_emb",
|
|
embedding_dim=384,
|
|
excluded_meta_data=["question_emb"],
|
|
similarity="cosine",
|
|
)
|
|
|
|
### Create a Retriever using embeddings
|
|
# Instead of retrieving via Elasticsearch's plain BM25, we want to use vector similarity of the questions (user question vs. FAQ ones).
|
|
# We can use the `EmbeddingRetriever` for this purpose and specify a model that we use for the embeddings.
|
|
#
|
|
retriever = EmbeddingRetriever(
|
|
document_store=document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2", use_gpu=True
|
|
)
|
|
|
|
# Download a csv containing some FAQ data
|
|
# Here: Some question-answer pairs related to COVID-19
|
|
doc_dir = "data/tutorial4"
|
|
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/small_faq_covid.csv.zip"
|
|
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
|
|
|
|
# Get dataframe with columns "question", "answer" and some custom metadata
|
|
df = pd.read_csv("small_faq_covid.csv")
|
|
# Minimal cleaning
|
|
df.fillna(value="", inplace=True)
|
|
df["question"] = df["question"].apply(lambda x: x.strip())
|
|
print(df.head())
|
|
|
|
# Get embeddings for our questions from the FAQs
|
|
questions = list(df["question"].values)
|
|
df["question_emb"] = retriever.embed_queries(texts=questions)
|
|
df = df.rename(columns={"question": "content"})
|
|
|
|
# Convert Dataframe to list of dicts and index them in our DocumentStore
|
|
docs_to_index = df.to_dict(orient="records")
|
|
document_store.write_documents(docs_to_index)
|
|
|
|
# Initialize a Pipeline (this time without a reader) and ask questions
|
|
|
|
from haystack.pipelines import FAQPipeline
|
|
|
|
pipe = FAQPipeline(retriever=retriever)
|
|
|
|
prediction = pipe.run(query="How is the virus spreading?", params={"Retriever": {"top_k": 10}})
|
|
print_answers(prediction, details="medium")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
tutorial4_faq_style_qa()
|
|
|
|
# This Haystack script was made with love by deepset in Berlin, Germany
|
|
# Haystack: https://github.com/deepset-ai/haystack
|
|
# deepset: https://deepset.ai/
|