mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-10-27 07:48:43 +00:00
* Add type annotations in QuestionAnsweringHead * Fix test by increasing max_seq_len * Add SampleBasket type annotation * Remove prediction head param from adaptive model init * Add type ignore for AdaptiveModel init * Fix and rename tests * Adjust folder structure Co-authored-by: Julian Risch <julian.risch@deepset.ai>
82 lines
2.5 KiB
Python
82 lines
2.5 KiB
Python
import logging
|
|
from pathlib import Path
|
|
|
|
from haystack.modeling.data_handler.data_silo import DataSilo
|
|
from haystack.modeling.data_handler.processor import SquadProcessor
|
|
from haystack.modeling.model.adaptive_model import AdaptiveModel
|
|
from haystack.modeling.model.language_model import LanguageModel
|
|
from haystack.modeling.model.optimization import initialize_optimizer
|
|
from haystack.modeling.model.prediction_head import QuestionAnsweringHead
|
|
from haystack.modeling.model.tokenization import Tokenizer
|
|
from haystack.modeling.training.base import Trainer
|
|
from haystack.modeling.utils import set_all_seeds, initialize_device_settings
|
|
|
|
|
|
def test_training(caplog=None):
|
|
if caplog:
|
|
caplog.set_level(logging.CRITICAL)
|
|
|
|
set_all_seeds(seed=42)
|
|
device, n_gpu = initialize_device_settings(use_cuda=False)
|
|
batch_size = 2
|
|
n_epochs = 1
|
|
evaluate_every = 4
|
|
base_LM_model = "distilbert-base-uncased"
|
|
|
|
tokenizer = Tokenizer.load(
|
|
pretrained_model_name_or_path=base_LM_model,
|
|
do_lower_case=True,
|
|
use_fast=True # TODO parametrize this to test slow as well
|
|
)
|
|
label_list = ["start_token", "end_token"]
|
|
processor = SquadProcessor(
|
|
tokenizer=tokenizer,
|
|
max_seq_len=256,
|
|
doc_stride=10,
|
|
max_query_length=6,
|
|
train_filename="train-sample.json",
|
|
dev_filename="dev-sample.json",
|
|
test_filename=None,
|
|
data_dir=Path("samples/qa"),
|
|
label_list=label_list,
|
|
metric="squad"
|
|
)
|
|
|
|
data_silo = DataSilo(processor=processor, batch_size=batch_size, max_processes=1)
|
|
language_model = LanguageModel.load(base_LM_model)
|
|
prediction_head = QuestionAnsweringHead()
|
|
model = AdaptiveModel(
|
|
language_model=language_model,
|
|
prediction_heads=[prediction_head],
|
|
embeds_dropout_prob=0.1,
|
|
lm_output_types=["per_token"],
|
|
device=device,
|
|
)
|
|
|
|
model, optimizer, lr_schedule = initialize_optimizer(
|
|
model=model,
|
|
learning_rate=2e-5,
|
|
# optimizer_opts={'name': 'AdamW', 'lr': 2E-05},
|
|
n_batches=len(data_silo.loaders["train"]),
|
|
n_epochs=n_epochs,
|
|
device=device
|
|
)
|
|
trainer = Trainer(
|
|
model=model,
|
|
optimizer=optimizer,
|
|
data_silo=data_silo,
|
|
epochs=n_epochs,
|
|
n_gpu=n_gpu,
|
|
lr_schedule=lr_schedule,
|
|
evaluate_every=evaluate_every,
|
|
device=device
|
|
)
|
|
trainer.train()
|
|
|
|
assert type(model) == AdaptiveModel
|
|
assert type(processor) == SquadProcessor
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_training()
|