haystack/test/test_eval.py
Julian Risch bf4563e5d2
Filtering duplicate answers (#1021)
* Allow filtering of duplicate answers as implemented in FARM

* Changed default behavior to filtering exact duplicates

* Change expected test result due to filtering of duplicate answers by default

* Rounding expected test results for comparison with predictions
2021-05-03 17:18:10 +02:00

224 lines
8.4 KiB
Python

import pytest
from haystack.document_store.base import BaseDocumentStore
from haystack.preprocessor.preprocessor import PreProcessor
from haystack.finder import Finder
from haystack.eval import EvalReader, EvalRetriever
from haystack import Pipeline
@pytest.mark.parametrize("batch_size", [None, 20])
@pytest.mark.elasticsearch
def test_add_eval_data(document_store, batch_size):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/small.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
batch_size=batch_size,
)
assert document_store.get_document_count(index="haystack_test_eval_document") == 87
assert document_store.get_label_count(index="haystack_test_feedback") == 1214
# test documents
docs = document_store.get_all_documents(index="haystack_test_eval_document", filters={"name": ["Normans"]})
assert docs[0].meta["name"] == "Normans"
assert len(docs[0].meta.keys()) == 1
# test labels
labels = document_store.get_all_labels(index="haystack_test_feedback")
label = None
for l in labels:
if l.question == "In what country is Normandy located?":
label = l
break
assert label.answer == "France"
assert label.no_answer == False
assert label.is_correct_answer == True
assert label.is_correct_document == True
assert label.question == "In what country is Normandy located?"
assert label.origin == "gold_label"
assert label.offset_start_in_doc == 159
# check combination
doc = document_store.get_document_by_id(label.document_id, index="haystack_test_eval_document")
start = label.offset_start_in_doc
end = start + len(label.answer)
assert doc.text[start:end] == "France"
@pytest.mark.elasticsearch
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_eval_reader(reader, document_store: BaseDocumentStore):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
)
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
# eval reader
reader_eval_results = reader.eval(
document_store=document_store,
label_index="haystack_test_feedback",
doc_index="haystack_test_eval_document",
device="cpu",
)
assert reader_eval_results["f1"] > 66.65
assert reader_eval_results["f1"] < 66.67
assert reader_eval_results["EM"] == 50
assert reader_eval_results["top_n_accuracy"] == 100.0
@pytest.mark.elasticsearch
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
@pytest.mark.parametrize("open_domain", [True, False])
@pytest.mark.parametrize("retriever", ["elasticsearch"], indirect=True)
def test_eval_elastic_retriever(document_store: BaseDocumentStore, open_domain, retriever):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
)
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
# eval retriever
results = retriever.eval(
top_k=1, label_index="haystack_test_feedback", doc_index="haystack_test_eval_document", open_domain=open_domain
)
assert results["recall"] == 1.0
assert results["mrr"] == 1.0
if not open_domain:
assert results["map"] == 1.0
@pytest.mark.elasticsearch
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
@pytest.mark.parametrize("retriever", ["elasticsearch"], indirect=True)
def test_eval_pipeline(document_store: BaseDocumentStore, reader, retriever):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
)
labels = document_store.get_all_labels_aggregated(index="haystack_test_feedback")
q_to_l_dict = {
l.question: {
"retriever": l,
"reader": l
} for l in labels
}
eval_retriever = EvalRetriever()
eval_reader = EvalReader()
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
p = Pipeline()
p.add_node(component=retriever, name="ESRetriever", inputs=["Query"])
p.add_node(component=eval_retriever, name="EvalRetriever", inputs=["ESRetriever"])
p.add_node(component=reader, name="QAReader", inputs=["EvalRetriever"])
p.add_node(component=eval_reader, name="EvalReader", inputs=["QAReader"])
for q, l in q_to_l_dict.items():
res = p.run(
query=q,
top_k_retriever=10,
labels=l,
top_k_reader=10,
index="haystack_test_eval_document",
)
assert eval_retriever.recall == 1.0
assert round(eval_reader.top_k_f1, 4) == 0.8333
assert eval_reader.top_k_em == 0.5
@pytest.mark.elasticsearch
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
@pytest.mark.parametrize("retriever", ["elasticsearch"], indirect=True)
def test_eval_finder(document_store: BaseDocumentStore, reader, retriever):
finder = Finder(reader=reader, retriever=retriever)
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
)
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
# eval finder
results = finder.eval(
label_index="haystack_test_feedback", doc_index="haystack_test_eval_document", top_k_retriever=1, top_k_reader=5
)
assert results["retriever_recall"] == 1.0
assert results["retriever_map"] == 1.0
assert abs(results["reader_topk_f1"] - 0.66666) < 0.001
assert abs(results["reader_topk_em"] - 0.5) < 0.001
assert abs(results["reader_topk_accuracy"] - 1) < 0.001
assert results["reader_top1_f1"] <= results["reader_topk_f1"]
assert results["reader_top1_em"] <= results["reader_topk_em"]
assert results["reader_top1_accuracy"] <= results["reader_topk_accuracy"]
# batch eval finder
results_batch = finder.eval_batch(
label_index="haystack_test_feedback", doc_index="haystack_test_eval_document", top_k_retriever=1, top_k_reader=5
)
assert results_batch["retriever_recall"] == 1.0
assert results_batch["retriever_map"] == 1.0
assert results_batch["reader_top1_f1"] == results["reader_top1_f1"]
assert results_batch["reader_top1_em"] == results["reader_top1_em"]
assert results_batch["reader_topk_accuracy"] == results["reader_topk_accuracy"]
@pytest.mark.elasticsearch
def test_eval_data_split_word(document_store):
# splitting by word
preprocessor = PreProcessor(
clean_empty_lines=False,
clean_whitespace=False,
clean_header_footer=False,
split_by="word",
split_length=4,
split_overlap=0,
split_respect_sentence_boundary=False,
)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
preprocessor=preprocessor,
)
labels = document_store.get_all_labels_aggregated(index="haystack_test_feedback")
docs = document_store.get_all_documents(index="haystack_test_eval_document")
assert len(docs) == 5
assert len(set(labels[0].multiple_document_ids)) == 2
@pytest.mark.elasticsearch
def test_eval_data_split_passage(document_store):
# splitting by passage
preprocessor = PreProcessor(
clean_empty_lines=False,
clean_whitespace=False,
clean_header_footer=False,
split_by="passage",
split_length=1,
split_overlap=0,
split_respect_sentence_boundary=False
)
document_store.add_eval_data(
filename="samples/squad/tiny_passages.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
preprocessor=preprocessor,
)
docs = document_store.get_all_documents(index="haystack_test_eval_document")
assert len(docs) == 2
assert len(docs[1].text) == 56