mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-08-18 13:37:55 +00:00

* ci: Simplify Python code with ruff rules SIM * Revert #5828 * ruff --select=I --fix haystack/modeling/infer.py --------- Co-authored-by: Massimiliano Pippi <mpippi@gmail.com>
343 lines
16 KiB
Python
343 lines
16 KiB
Python
import os
|
|
|
|
import pytest
|
|
|
|
from haystack.document_stores import InMemoryDocumentStore
|
|
from haystack.nodes.retriever.web import WebRetriever
|
|
from haystack.pipelines import (
|
|
Pipeline,
|
|
FAQPipeline,
|
|
DocumentSearchPipeline,
|
|
MostSimilarDocumentsPipeline,
|
|
WebQAPipeline,
|
|
SearchSummarizationPipeline,
|
|
)
|
|
from haystack.nodes import EmbeddingRetriever, PromptNode, BM25Retriever, TransformersSummarizer
|
|
from haystack.schema import Document
|
|
|
|
|
|
def test_faq_pipeline():
|
|
documents = [
|
|
{"content": f"How to test module-{i}?", "meta": {"source": f"wiki{i}", "answer": f"Using tests for module-{i}"}}
|
|
for i in range(1, 6)
|
|
]
|
|
document_store = InMemoryDocumentStore()
|
|
retriever = EmbeddingRetriever(document_store=document_store, embedding_model="deepset/sentence_bert")
|
|
document_store.write_documents(documents)
|
|
document_store.update_embeddings(retriever)
|
|
|
|
pipeline = FAQPipeline(retriever=retriever)
|
|
|
|
output = pipeline.run(query="How to test this?", params={"Retriever": {"top_k": 3}})
|
|
assert len(output["answers"]) == 3
|
|
assert output["query"].startswith("How to")
|
|
assert output["answers"][0].answer.startswith("Using tests")
|
|
|
|
output = pipeline.run(
|
|
query="How to test this?", params={"Retriever": {"filters": {"source": ["wiki2"]}, "top_k": 5}}
|
|
)
|
|
assert len(output["answers"]) == 1
|
|
|
|
|
|
def test_document_search_pipeline():
|
|
documents = [
|
|
{"content": "Sample text for document-1", "meta": {"source": "wiki1"}},
|
|
{"content": "Sample text for document-2", "meta": {"source": "wiki2"}},
|
|
{"content": "Sample text for document-3", "meta": {"source": "wiki3"}},
|
|
{"content": "Sample text for document-4", "meta": {"source": "wiki4"}},
|
|
{"content": "Sample text for document-5", "meta": {"source": "wiki5"}},
|
|
]
|
|
document_store = InMemoryDocumentStore()
|
|
retriever = EmbeddingRetriever(document_store=document_store, embedding_model="deepset/sentence_bert")
|
|
document_store.write_documents(documents)
|
|
document_store.update_embeddings(retriever)
|
|
|
|
pipeline = DocumentSearchPipeline(retriever=retriever)
|
|
output = pipeline.run(query="How to test this?", params={"top_k": 4})
|
|
assert len(output.get("documents", [])) == 4
|
|
|
|
output = pipeline.run(query="How to test this?", params={"filters": {"source": ["wiki2"]}, "top_k": 5})
|
|
assert len(output["documents"]) == 1
|
|
|
|
|
|
def test_most_similar_documents_pipeline():
|
|
documents = [
|
|
{"id": "a", "content": "Sample text for document-1", "meta": {"source": "wiki1"}},
|
|
{"id": "b", "content": "Sample text for document-2", "meta": {"source": "wiki2"}},
|
|
{"content": "Sample text for document-3", "meta": {"source": "wiki3"}},
|
|
{"content": "Sample text for document-4", "meta": {"source": "wiki4"}},
|
|
{"content": "Sample text for document-5", "meta": {"source": "wiki5"}},
|
|
]
|
|
document_store = InMemoryDocumentStore()
|
|
retriever = EmbeddingRetriever(document_store=document_store, embedding_model="deepset/sentence_bert")
|
|
document_store.write_documents(documents)
|
|
document_store.update_embeddings(retriever)
|
|
|
|
docs_id: list = ["a", "b"]
|
|
pipeline = MostSimilarDocumentsPipeline(document_store=document_store)
|
|
list_of_documents = pipeline.run(document_ids=docs_id)
|
|
|
|
assert len(list_of_documents[0]) > 1
|
|
assert isinstance(list_of_documents, list)
|
|
assert len(list_of_documents) == len(docs_id)
|
|
|
|
for another_list in list_of_documents:
|
|
assert isinstance(another_list, list)
|
|
for document in another_list:
|
|
assert isinstance(document, Document)
|
|
assert isinstance(document.id, str)
|
|
assert isinstance(document.content, str)
|
|
|
|
|
|
def test_most_similar_documents_pipeline_with_filters():
|
|
documents = [
|
|
{"id": "a", "content": "Sample text for document-1", "meta": {"source": "wiki1"}},
|
|
{"id": "b", "content": "Sample text for document-2", "meta": {"source": "wiki2"}},
|
|
{"content": "Sample text for document-3", "meta": {"source": "wiki3"}},
|
|
{"content": "Sample text for document-4", "meta": {"source": "wiki4"}},
|
|
{"content": "Sample text for document-5", "meta": {"source": "wiki5"}},
|
|
]
|
|
document_store = InMemoryDocumentStore()
|
|
retriever = EmbeddingRetriever(document_store=document_store, embedding_model="deepset/sentence_bert")
|
|
document_store.write_documents(documents)
|
|
document_store.update_embeddings(retriever)
|
|
|
|
docs_id: list = ["a", "b"]
|
|
filters = {"source": ["wiki3", "wiki4", "wiki5"]}
|
|
pipeline = MostSimilarDocumentsPipeline(document_store=document_store)
|
|
list_of_documents = pipeline.run(document_ids=docs_id, filters=filters)
|
|
|
|
assert len(list_of_documents[0]) > 1
|
|
assert isinstance(list_of_documents, list)
|
|
assert len(list_of_documents) == len(docs_id)
|
|
|
|
for another_list in list_of_documents:
|
|
assert isinstance(another_list, list)
|
|
for document in another_list:
|
|
assert isinstance(document, Document)
|
|
assert isinstance(document.id, str)
|
|
assert isinstance(document.content, str)
|
|
assert document.meta["source"] in ["wiki3", "wiki4", "wiki5"]
|
|
|
|
|
|
def test_query_and_indexing_pipeline(samples_path):
|
|
# test correct load of indexing pipeline from yaml
|
|
pipeline = Pipeline.load_from_yaml(
|
|
samples_path / "pipelines" / "test.haystack-pipeline.yml", pipeline_name="indexing_pipeline"
|
|
)
|
|
pipeline.run(file_paths=samples_path / "pipelines" / "sample_pdf_1.pdf")
|
|
# test correct load of query pipeline from yaml
|
|
pipeline = Pipeline.load_from_yaml(
|
|
samples_path / "pipelines" / "test.haystack-pipeline.yml", pipeline_name="query_pipeline"
|
|
)
|
|
prediction = pipeline.run(
|
|
query="Who made the PDF specification?", params={"Retriever": {"top_k": 2}, "Reader": {"top_k": 1}}
|
|
)
|
|
assert prediction["query"] == "Who made the PDF specification?"
|
|
assert prediction["answers"][0].answer == "Adobe Systems"
|
|
assert "_debug" not in prediction.keys()
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
not os.environ.get("OPENAI_API_KEY", None),
|
|
reason="Please export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
|
|
)
|
|
@pytest.mark.skipif(
|
|
not os.environ.get("SERPERDEV_API_KEY", None),
|
|
reason="Please export an env var called SERPERDEV_API_KEY containing the SerperDev key to run this test.",
|
|
)
|
|
def test_webqa_pipeline():
|
|
search_key = os.environ.get("SERPERDEV_API_KEY")
|
|
openai_key = os.environ.get("OPENAI_API_KEY")
|
|
pn = PromptNode(
|
|
"text-davinci-003",
|
|
api_key=openai_key,
|
|
max_length=256,
|
|
default_prompt_template="question-answering-with-document-scores",
|
|
)
|
|
web_retriever = WebRetriever(api_key=search_key, top_search_results=2)
|
|
pipeline = WebQAPipeline(retriever=web_retriever, prompt_node=pn)
|
|
result = pipeline.run(query="Who is the father of Arya Stark?")
|
|
assert isinstance(result, dict)
|
|
assert len(result["results"]) == 1
|
|
answer = result["results"][0]
|
|
assert "stark" in answer.lower() or "ned" in answer.lower()
|
|
|
|
|
|
def test_faq_pipeline_batch():
|
|
documents = [
|
|
{"content": "How to test module-1?", "meta": {"source": "wiki1", "answer": "Using tests for module-1"}},
|
|
{"content": "How to test module-2?", "meta": {"source": "wiki2", "answer": "Using tests for module-2"}},
|
|
{"content": "How to test module-3?", "meta": {"source": "wiki3", "answer": "Using tests for module-3"}},
|
|
{"content": "How to test module-4?", "meta": {"source": "wiki4", "answer": "Using tests for module-4"}},
|
|
{"content": "How to test module-5?", "meta": {"source": "wiki5", "answer": "Using tests for module-5"}},
|
|
]
|
|
document_store = InMemoryDocumentStore(embedding_dim=384)
|
|
retriever = EmbeddingRetriever(
|
|
document_store=document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2"
|
|
)
|
|
document_store.write_documents(documents)
|
|
document_store.update_embeddings(retriever)
|
|
|
|
pipeline = FAQPipeline(retriever=retriever)
|
|
|
|
output = pipeline.run_batch(queries=["How to test this?", "How to test this?"], params={"Retriever": {"top_k": 3}})
|
|
assert len(output["answers"]) == 2 # 2 queries
|
|
assert len(output["answers"][0]) == 3 # 3 answers per query
|
|
assert output["queries"][0].startswith("How to")
|
|
assert output["answers"][0][0].answer.startswith("Using tests")
|
|
|
|
|
|
def test_document_search_pipeline_batch():
|
|
documents = [
|
|
{"content": "Sample text for document-1", "meta": {"source": "wiki1"}},
|
|
{"content": "Sample text for document-2", "meta": {"source": "wiki2"}},
|
|
{"content": "Sample text for document-3", "meta": {"source": "wiki3"}},
|
|
{"content": "Sample text for document-4", "meta": {"source": "wiki4"}},
|
|
{"content": "Sample text for document-5", "meta": {"source": "wiki5"}},
|
|
]
|
|
document_store = InMemoryDocumentStore(embedding_dim=384)
|
|
retriever = EmbeddingRetriever(
|
|
document_store=document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2"
|
|
)
|
|
document_store.write_documents(documents)
|
|
document_store.update_embeddings(retriever)
|
|
|
|
pipeline = DocumentSearchPipeline(retriever=retriever)
|
|
output = pipeline.run_batch(queries=["How to test this?", "How to test this?"], params={"top_k": 4})
|
|
assert len(output["documents"]) == 2 # 2 queries
|
|
assert len(output["documents"][0]) == 4 # 4 docs per query
|
|
|
|
|
|
def test_most_similar_documents_pipeline_batch():
|
|
documents = [
|
|
{"id": "a", "content": "Sample text for document-1", "meta": {"source": "wiki1"}},
|
|
{"id": "b", "content": "Sample text for document-2", "meta": {"source": "wiki2"}},
|
|
{"content": "Sample text for document-3", "meta": {"source": "wiki3"}},
|
|
{"content": "Sample text for document-4", "meta": {"source": "wiki4"}},
|
|
{"content": "Sample text for document-5", "meta": {"source": "wiki5"}},
|
|
]
|
|
document_store = InMemoryDocumentStore(embedding_dim=384)
|
|
retriever = EmbeddingRetriever(
|
|
document_store=document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2"
|
|
)
|
|
document_store.write_documents(documents)
|
|
document_store.update_embeddings(retriever)
|
|
|
|
docs_id: list = ["a", "b"]
|
|
pipeline = MostSimilarDocumentsPipeline(document_store=document_store)
|
|
list_of_documents = pipeline.run_batch(document_ids=docs_id)
|
|
|
|
assert len(list_of_documents[0]) > 1
|
|
assert isinstance(list_of_documents, list)
|
|
assert len(list_of_documents) == len(docs_id)
|
|
|
|
for another_list in list_of_documents:
|
|
assert isinstance(another_list, list)
|
|
for document in another_list:
|
|
assert isinstance(document, Document)
|
|
assert isinstance(document.id, str)
|
|
assert isinstance(document.content, str)
|
|
|
|
|
|
def test_most_similar_documents_pipeline_with_filters_batch():
|
|
documents = [
|
|
{"id": "a", "content": "Sample text for document-1", "meta": {"source": "wiki1"}},
|
|
{"id": "b", "content": "Sample text for document-2", "meta": {"source": "wiki2"}},
|
|
{"content": "Sample text for document-3", "meta": {"source": "wiki3"}},
|
|
{"content": "Sample text for document-4", "meta": {"source": "wiki4"}},
|
|
{"content": "Sample text for document-5", "meta": {"source": "wiki5"}},
|
|
]
|
|
document_store = InMemoryDocumentStore(embedding_dim=384)
|
|
retriever = EmbeddingRetriever(
|
|
document_store=document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2"
|
|
)
|
|
document_store = InMemoryDocumentStore(embedding_dim=384)
|
|
document_store.write_documents(documents)
|
|
document_store.update_embeddings(retriever)
|
|
|
|
docs_id: list = ["a", "b"]
|
|
filters = {"source": ["wiki3", "wiki4", "wiki5"]}
|
|
pipeline = MostSimilarDocumentsPipeline(document_store=document_store)
|
|
list_of_documents = pipeline.run_batch(document_ids=docs_id, filters=filters)
|
|
|
|
assert len(list_of_documents[0]) > 1
|
|
assert isinstance(list_of_documents, list)
|
|
assert len(list_of_documents) == len(docs_id)
|
|
|
|
for another_list in list_of_documents:
|
|
assert isinstance(another_list, list)
|
|
for document in another_list:
|
|
assert isinstance(document, Document)
|
|
assert isinstance(document.id, str)
|
|
assert isinstance(document.content, str)
|
|
assert document.meta["source"] in ["wiki3", "wiki4", "wiki5"]
|
|
|
|
|
|
def test_summarization_pipeline():
|
|
docs = [
|
|
Document(
|
|
content="""
|
|
PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions.
|
|
The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected
|
|
by the shutoffs which were expected to last through at least midday tomorrow.
|
|
"""
|
|
),
|
|
Document(
|
|
content="""
|
|
The Eiffel Tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest
|
|
structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction,
|
|
the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a
|
|
title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first
|
|
structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower
|
|
in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel
|
|
Tower is the second tallest free-standing structure in France after the Millau Viaduct.
|
|
"""
|
|
),
|
|
]
|
|
summarizer = TransformersSummarizer(model_name_or_path="sshleifer/distilbart-xsum-12-6", use_gpu=False)
|
|
|
|
ds = InMemoryDocumentStore(use_bm25=True)
|
|
retriever = BM25Retriever(document_store=ds)
|
|
ds.write_documents(docs)
|
|
|
|
query = "Eiffel Tower"
|
|
pipeline = SearchSummarizationPipeline(retriever=retriever, summarizer=summarizer, return_in_answer_format=True)
|
|
output = pipeline.run(query=query, params={"Retriever": {"top_k": 1}})
|
|
answers = output["answers"]
|
|
assert len(answers) == 1
|
|
assert answers[0]["answer"].strip() == "The Eiffel Tower is one of the world's tallest structures."
|
|
|
|
|
|
def test_summarization_pipeline_one_summary():
|
|
split_docs = [
|
|
Document(
|
|
content="""
|
|
The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris.
|
|
Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the
|
|
Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler
|
|
Building in New York City was finished in 1930.
|
|
"""
|
|
),
|
|
Document(
|
|
content="""
|
|
It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the
|
|
top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters,
|
|
the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.
|
|
"""
|
|
),
|
|
]
|
|
ds = InMemoryDocumentStore(use_bm25=True)
|
|
retriever = BM25Retriever(document_store=ds)
|
|
ds.write_documents(split_docs)
|
|
summarizer = TransformersSummarizer(model_name_or_path="sshleifer/distilbart-xsum-12-6", use_gpu=False)
|
|
|
|
query = "Eiffel Tower"
|
|
pipeline = SearchSummarizationPipeline(
|
|
retriever=retriever, summarizer=summarizer, generate_single_summary=True, return_in_answer_format=True
|
|
)
|
|
output = pipeline.run(query=query, params={"Retriever": {"top_k": 2}})
|
|
answers = output["answers"]
|
|
assert len(answers) == 1
|
|
assert answers[0]["answer"].strip() == "The Eiffel Tower was built in 1924 in Paris, France."
|