mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-09-22 06:33:43 +00:00

* draft llm evaluator * docstrings * flexible inputs; validate inputs and outputs * add tests * add release note * remove example * docstrings * make outputs parameter optional. default: * validate init parameters * linting * remove mention of binary scores from template * make examples and outputs params non-optional * removed leftover from optional outputs param * simplify building examples section for template * validate inputs and outputs in examples are dict with str as key * fix pylint too-many-boolean-expressions * increase test coverage
299 lines
11 KiB
Python
299 lines
11 KiB
Python
import json
|
|
from typing import Any, Dict, List, Tuple, Type
|
|
|
|
from haystack import component, default_from_dict, default_to_dict
|
|
from haystack.components.builders import PromptBuilder
|
|
from haystack.components.generators import OpenAIGenerator
|
|
from haystack.utils import Secret, deserialize_secrets_inplace
|
|
|
|
|
|
@component
|
|
class LLMEvaluator:
|
|
"""
|
|
Uses an LLM to evaluate inputs based on a prompt containing instructions and examples.
|
|
|
|
The default API requires an OpenAI API key to be provided as an environment variable "OPENAI_API_KEY".
|
|
The inputs are lists that are user-defined depending on the desired metric.
|
|
The output is a dictionary with a key `results` containing a list of evaluation results.
|
|
Each result is a dictionary with user-defined keys and values of either 0 for FALSE or 1 for TRUE respectively.
|
|
|
|
Usage example:
|
|
```python
|
|
from haystack.components.evaluators import LLMEvaluator
|
|
evaluator = LLMEvaluator(
|
|
instructions="Is this answer problematic for children?",
|
|
inputs=[("responses", List[str])],
|
|
outputs=["score"],
|
|
)
|
|
RESPONSES = [
|
|
"Football is the most popular sport with around 4 billion followers worldwide",
|
|
"Python language was created by Guido van Rossum.",
|
|
]
|
|
results = evaluator.run(responses=RESPONSES)
|
|
```
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
instructions: str,
|
|
inputs: List[Tuple[str, Type[List]]],
|
|
outputs: List[str],
|
|
examples: List[Dict[str, Any]],
|
|
*,
|
|
api: str = "openai",
|
|
api_key: Secret = Secret.from_env_var("OPENAI_API_KEY"),
|
|
):
|
|
"""
|
|
Creates an instance of LLMEvaluator.
|
|
|
|
:param instructions:
|
|
The prompt instructions to use for evaluation.
|
|
Should be a question about the inputs that can be answered with yes or no.
|
|
:param inputs:
|
|
The inputs that the component expects as incoming connections and that it evaluates.
|
|
Each input is a tuple of an input name and input type. Input types must be lists.
|
|
:param outputs:
|
|
Output names of the evaluation results. They correspond to keys in the output dictionary.
|
|
The default is a single key "score".
|
|
:param examples:
|
|
Few-shot examples conforming to the expected input and output format as defined in the `inputs` and
|
|
`outputs` parameters.
|
|
Each example is a dictionary with keys "inputs" and "outputs"
|
|
They contain the input and output as dictionaries respectively.
|
|
:param api:
|
|
The API to use for calling an LLM through a Generator.
|
|
Supported APIs: "openai".
|
|
:param api_key:
|
|
The API key.
|
|
|
|
"""
|
|
self.validate_init_parameters(inputs, outputs, examples)
|
|
|
|
self.instructions = instructions
|
|
self.inputs = inputs
|
|
self.outputs = outputs
|
|
self.examples = examples
|
|
self.api = api
|
|
self.api_key = api_key
|
|
|
|
if api == "openai":
|
|
self.generator = OpenAIGenerator(api_key=api_key)
|
|
else:
|
|
raise ValueError(f"Unsupported API: {api}")
|
|
|
|
template = self.prepare_template()
|
|
self.builder = PromptBuilder(template=template)
|
|
|
|
component.set_input_types(self, **dict(inputs))
|
|
|
|
def validate_init_parameters(
|
|
self, inputs: List[Tuple[str, Type[List]]], outputs: List[str], examples: List[Dict[str, Any]]
|
|
):
|
|
"""
|
|
Validate the init parameters.
|
|
|
|
:param inputs:
|
|
The inputs to validate.
|
|
:param outputs:
|
|
The outputs to validate.
|
|
:param examples:
|
|
The examples to validate.
|
|
|
|
:raises ValueError:
|
|
If the inputs are not a list of tuples with a string and a type of list.
|
|
If the outputs are not a list of strings.
|
|
If the examples are not a list of dictionaries.
|
|
If any example does not have keys "inputs" and "outputs" with values that are dictionaries with string keys.
|
|
"""
|
|
# Validate inputs
|
|
if (
|
|
not isinstance(inputs, list)
|
|
or not all(isinstance(input, tuple) for input in inputs)
|
|
or not all(isinstance(input[0], str) and input[1] is not list and len(input) == 2 for input in inputs)
|
|
):
|
|
msg = (
|
|
f"LLM evaluator expects inputs to be a list of tuples. Each tuple must contain an input name and "
|
|
f"type of list but received {inputs}."
|
|
)
|
|
raise ValueError(msg)
|
|
|
|
# Validate outputs
|
|
if not isinstance(outputs, list) or not all(isinstance(output, str) for output in outputs):
|
|
msg = f"LLM evaluator expects outputs to be a list of str but received {outputs}."
|
|
raise ValueError(msg)
|
|
|
|
# Validate examples are lists of dicts
|
|
if not isinstance(examples, list) or not all(isinstance(example, dict) for example in examples):
|
|
msg = f"LLM evaluator expects examples to be a list of dictionaries but received {examples}."
|
|
raise ValueError(msg)
|
|
|
|
# Validate each example
|
|
for example in examples:
|
|
if (
|
|
{"inputs", "outputs"} != example.keys()
|
|
or not all(isinstance(example[param], dict) for param in ["inputs", "outputs"])
|
|
or not all(isinstance(key, str) for param in ["inputs", "outputs"] for key in example[param])
|
|
):
|
|
msg = (
|
|
f"LLM evaluator expects each example to have keys `inputs` and `outputs` with values that are "
|
|
f"dictionaries with str keys but received {example}."
|
|
)
|
|
raise ValueError(msg)
|
|
|
|
@component.output_types(results=List[Dict[str, Any]])
|
|
def run(self, **inputs) -> Dict[str, Any]:
|
|
"""
|
|
Run the LLM evaluator.
|
|
|
|
:param inputs:
|
|
The input values to evaluate. The keys are the input names and the values are lists of input values.
|
|
:returns:
|
|
A dictionary with a single `results` entry that contains a list of results.
|
|
Each result is a dictionary containing the keys as defined in the `outputs` parameter of the LLMEvaluator
|
|
and the evaluation results as the values.
|
|
"""
|
|
self.validate_input_parameters(dict(self.inputs), inputs)
|
|
|
|
# inputs is a dictionary with keys being input names and values being a list of input values
|
|
# We need to iterate through the lists in parallel for all keys of the dictionary
|
|
input_names, values = inputs.keys(), list(zip(*inputs.values()))
|
|
list_of_input_names_to_values = [dict(zip(input_names, v)) for v in values]
|
|
|
|
results = []
|
|
for input_names_to_values in list_of_input_names_to_values:
|
|
prompt = self.builder.run(**input_names_to_values)
|
|
result = self.generator.run(prompt=prompt["prompt"])
|
|
|
|
self.validate_outputs(expected=self.outputs, received=result["replies"][0])
|
|
parsed_result = json.loads(result["replies"][0])
|
|
parsed_result["name"] = "llm"
|
|
results.append(parsed_result)
|
|
|
|
return {"results": results}
|
|
|
|
def prepare_template(self) -> str:
|
|
"""
|
|
Combine instructions, inputs, outputs, and examples into one prompt template with the following format:
|
|
Instructions:
|
|
<instructions>
|
|
|
|
Generate the response in JSON format with the following keys:
|
|
<list of output keys>
|
|
Consider the instructions and the examples below to determine those values.
|
|
|
|
Examples:
|
|
<examples>
|
|
|
|
Inputs:
|
|
<inputs>
|
|
Outputs:
|
|
|
|
:returns:
|
|
The prompt template.
|
|
"""
|
|
inputs_section = (
|
|
"{" + ",".join([f'"{input_socket[0]}": {{{{ {input_socket[0]} }}}}' for input_socket in self.inputs]) + "}"
|
|
)
|
|
|
|
examples_section = "\n".join(
|
|
[
|
|
"Inputs:\n" + json.dumps(example["inputs"]) + "\nOutputs:\n" + json.dumps(example["outputs"])
|
|
for example in self.examples
|
|
]
|
|
)
|
|
return (
|
|
f"Instructions:\n"
|
|
f"{self.instructions}\n\n"
|
|
f"Generate the response in JSON format with the following keys:\n"
|
|
f"{json.dumps(self.outputs)}\n"
|
|
f"Consider the instructions and the examples below to determine those values.\n\n"
|
|
f"Examples:\n"
|
|
f"{examples_section}\n\n"
|
|
f"Inputs:\n"
|
|
f"{inputs_section}\n"
|
|
f"Outputs:\n"
|
|
)
|
|
|
|
def to_dict(self) -> Dict[str, Any]:
|
|
"""
|
|
Serialize this component to a dictionary.
|
|
|
|
:returns:
|
|
The serialized component as a dictionary.
|
|
"""
|
|
return default_to_dict(
|
|
self,
|
|
instructions=self.instructions,
|
|
inputs=self.inputs,
|
|
outputs=self.outputs,
|
|
examples=self.examples,
|
|
api=self.api,
|
|
api_key=self.api_key.to_dict(),
|
|
)
|
|
|
|
@classmethod
|
|
def from_dict(cls, data: Dict[str, Any]) -> "LLMEvaluator":
|
|
"""
|
|
Deserialize this component from a dictionary.
|
|
|
|
:param data:
|
|
The dictionary representation of this component.
|
|
:returns:
|
|
The deserialized component instance.
|
|
"""
|
|
deserialize_secrets_inplace(data["init_parameters"], keys=["api_key"])
|
|
return default_from_dict(cls, data)
|
|
|
|
@staticmethod
|
|
def validate_input_parameters(expected: Dict[str, Any], received: Dict[str, Any]) -> None:
|
|
"""
|
|
Validate the input parameters.
|
|
|
|
:param expected:
|
|
The expected input parameters.
|
|
:param received:
|
|
The received input parameters.
|
|
|
|
:raises ValueError:
|
|
If not all expected inputs are present in the received inputs
|
|
If the received inputs are not lists or have different lengths
|
|
"""
|
|
# Validate that all expected inputs are present in the received inputs
|
|
for param in expected.keys():
|
|
if param not in received:
|
|
msg = f"LLM evaluator expected input parameter '{param}' but received only {received.keys()}."
|
|
raise ValueError(msg)
|
|
|
|
# Validate that all received inputs are lists
|
|
if not all(isinstance(input, list) for input in received.values()):
|
|
msg = f"LLM evaluator expects all input values to be lists but received {[type(input) for input in received.values()]}."
|
|
raise ValueError(msg)
|
|
|
|
# Validate that all received inputs are of the same length
|
|
inputs = received.values()
|
|
length = len(next(iter(inputs)))
|
|
if not all(len(input) == length for input in inputs):
|
|
msg = (
|
|
f"LLM evaluator expects all input lists to have the same length but received {inputs} with lengths "
|
|
f"{[len(input) for input in inputs]}."
|
|
)
|
|
raise ValueError(msg)
|
|
|
|
@staticmethod
|
|
def validate_outputs(expected: List[str], received: str) -> None:
|
|
"""
|
|
Validate the output.
|
|
|
|
:param expected:
|
|
Names of expected outputs
|
|
:param received:
|
|
Names of received outputs
|
|
|
|
:raises ValueError:
|
|
If not all expected outputs are present in the received outputs
|
|
"""
|
|
parsed_output = json.loads(received)
|
|
if not all(output in parsed_output for output in expected):
|
|
msg = f"Expected response from LLM evaluator to be JSON with keys {expected}, got {received}."
|
|
raise ValueError(msg)
|