mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-23 08:52:16 +00:00

* Modify __str__ and __repr__ for Document and Answer * Rename QueryClassifier in Tutorial11 * Improve the output of tutorial1 * Make the output of Tutorial8 a bit less dense * Add a print_questions util to print the output of question generating pipelines * Replace custom printing with the new utility in Tutorial13 * Ensure all output is printed with minimal details in Tutorial14 and add some titles * Minor change to print_answers * Make tutorial3's output the same as tutorial1 * Add __repr__ to Answer and fix to_dict() * Fix a bug in the Document and Answer's __str__ method * Improve print_answers, print_documents and print_questions * Using print_answers in Tutorial7 and fixing typo in the utils * Remove duplicate line in Tutorial12 * Use print_answers in Tutorial4 * Add explanation of what the documents in the output of the basic QA pipeline are * Move the fields constant into print_answers * Normalize all 'minimal' to 'minimum' (they were mixed up) * Improve the sample output to include all fields from Document and Answer Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
221 lines
9.0 KiB
Python
221 lines
9.0 KiB
Python
import os
|
|
from subprocess import Popen, PIPE, STDOUT
|
|
from haystack.utils import fetch_archive_from_http, convert_files_to_dicts, clean_wiki_text, launch_es, print_answers
|
|
from haystack.pipelines import Pipeline, RootNode
|
|
from haystack.document_stores import ElasticsearchDocumentStore
|
|
from haystack.nodes import ElasticsearchRetriever, DensePassageRetriever, FARMReader, TransformersQueryClassifier, SklearnQueryClassifier
|
|
|
|
|
|
def tutorial14_query_classifier():
|
|
|
|
#Download and prepare data - 517 Wikipedia articles for Game of Thrones
|
|
doc_dir = "data/article_txt_got"
|
|
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip"
|
|
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
|
|
|
|
# convert files to dicts containing documents that can be indexed to our datastore
|
|
got_dicts = convert_files_to_dicts(
|
|
dir_path=doc_dir,
|
|
clean_func=clean_wiki_text,
|
|
split_paragraphs=True
|
|
)
|
|
|
|
# Initialize DocumentStore and index documents
|
|
launch_es()
|
|
document_store = ElasticsearchDocumentStore()
|
|
document_store.delete_documents()
|
|
document_store.write_documents(got_dicts)
|
|
|
|
# Initialize Sparse retriever
|
|
es_retriever = ElasticsearchRetriever(document_store=document_store)
|
|
|
|
# Initialize dense retriever
|
|
dpr_retriever = DensePassageRetriever(document_store)
|
|
document_store.update_embeddings(dpr_retriever, update_existing_embeddings=False)
|
|
|
|
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
|
|
|
|
print()
|
|
print("Sklearn keyword classifier")
|
|
print("==========================")
|
|
# Here we build the pipeline
|
|
sklearn_keyword_classifier = Pipeline()
|
|
sklearn_keyword_classifier.add_node(component=SklearnQueryClassifier(), name="QueryClassifier", inputs=["Query"])
|
|
sklearn_keyword_classifier.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
|
|
sklearn_keyword_classifier.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"])
|
|
sklearn_keyword_classifier.add_node(component=reader, name="QAReader", inputs=["ESRetriever", "DPRRetriever"])
|
|
sklearn_keyword_classifier.draw("pipeline_classifier.png")
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_1 = sklearn_keyword_classifier.run(
|
|
query="Who is the father of Arya Stark?",
|
|
)
|
|
print("\n===============================")
|
|
print("DPR Results" + "\n" + "="*15)
|
|
print_answers(res_1, details="minimum")
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_2 = sklearn_keyword_classifier.run(
|
|
query="arya stark father",
|
|
)
|
|
print("\n===============================")
|
|
print("ES Results" + "\n" + "="*15)
|
|
print_answers(res_2, details="minimum")
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_3 = sklearn_keyword_classifier.run(
|
|
query="which country was jon snow filmed ?",
|
|
)
|
|
print("\n===============================")
|
|
print("DPR Results" + "\n" + "="*15)
|
|
print_answers(res_3, details="minimum")
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_4 = sklearn_keyword_classifier.run(
|
|
query="jon snow country",
|
|
)
|
|
print("\n===============================")
|
|
print("ES Results" + "\n" + "="*15)
|
|
print_answers(res_4, details="minimum")
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_5 = sklearn_keyword_classifier.run(
|
|
query="who are the younger brothers of arya stark ?",
|
|
)
|
|
print("\n===============================")
|
|
print("DPR Results" + "\n" + "="*15)
|
|
print_answers(res_5, details="minimum")
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_6 = sklearn_keyword_classifier.run(
|
|
query="arya stark younger brothers",
|
|
)
|
|
print("\n===============================")
|
|
print("ES Results" + "\n" + "="*15)
|
|
print_answers(res_6, details="minimum")
|
|
|
|
print()
|
|
print("Transformer keyword classifier")
|
|
print("==============================")
|
|
# Here we build the pipeline
|
|
transformer_keyword_classifier = Pipeline()
|
|
transformer_keyword_classifier.add_node(component=TransformersQueryClassifier(), name="QueryClassifier", inputs=["Query"])
|
|
transformer_keyword_classifier.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
|
|
transformer_keyword_classifier.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"])
|
|
transformer_keyword_classifier.add_node(component=reader, name="QAReader", inputs=["ESRetriever", "DPRRetriever"])
|
|
transformer_keyword_classifier.draw("pipeline_classifier.png")
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_1 = transformer_keyword_classifier.run(
|
|
query="Who is the father of Arya Stark?",
|
|
)
|
|
print("\n===============================")
|
|
print("DPR Results" + "\n" + "="*15)
|
|
print_answers(res_1, details="minimum")
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_2 = transformer_keyword_classifier.run(
|
|
query="arya stark father",
|
|
)
|
|
print("\n===============================")
|
|
print("ES Results" + "\n" + "="*15)
|
|
print_answers(res_2, details="minimum")
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_3 = transformer_keyword_classifier.run(
|
|
query="which country was jon snow filmed ?",
|
|
)
|
|
print("\n===============================")
|
|
print("DPR Results" + "\n" + "="*15)
|
|
print_answers(res_3, details="minimum")
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_4 = transformer_keyword_classifier.run(
|
|
query="jon snow country",
|
|
)
|
|
print("\n===============================")
|
|
print("ES Results" + "\n" + "="*15)
|
|
print_answers(res_4, details="minimum")
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_5 = transformer_keyword_classifier.run(
|
|
query="who are the younger brothers of arya stark ?",
|
|
)
|
|
print("\n===============================")
|
|
print("DPR Results" + "\n" + "="*15)
|
|
print_answers(res_5, details="minimum")
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_6 = transformer_keyword_classifier.run(
|
|
query="arya stark younger brothers",
|
|
)
|
|
print("\n===============================")
|
|
print("ES Results" + "\n" + "="*15)
|
|
print_answers(res_6, details="minimum")
|
|
|
|
print()
|
|
print("Transformer question classifier")
|
|
print("===============================")
|
|
|
|
# Here we build the pipeline
|
|
transformer_question_classifier = Pipeline()
|
|
transformer_question_classifier.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["Query"])
|
|
transformer_question_classifier.add_node(component=TransformersQueryClassifier(model_name_or_path="shahrukhx01/question-vs-statement-classifier"), name="QueryClassifier", inputs=["DPRRetriever"])
|
|
transformer_question_classifier.add_node(component=reader, name="QAReader", inputs=["QueryClassifier.output_1"])
|
|
transformer_question_classifier.draw("question_classifier.png")
|
|
|
|
# Run only the QA reader on the question query
|
|
res_1 = transformer_question_classifier.run(
|
|
query="Who is the father of Arya Stark?",
|
|
)
|
|
print("\n===============================")
|
|
print("DPR Results" + "\n" + "="*15)
|
|
print_answers(res_1, details="minimum")
|
|
|
|
# Show only DPR results
|
|
res_2 = transformer_question_classifier.run(
|
|
query="Arya Stark was the daughter of a Lord.",
|
|
)
|
|
print("\n===============================")
|
|
print("ES Results" + "\n" + "="*15)
|
|
print_answers(res_2, details="minimum")
|
|
|
|
# Here we create the keyword vs question/statement query classifier
|
|
|
|
queries = ["arya stark father","jon snow country",
|
|
"who is the father of arya stark","which country was jon snow filmed?"]
|
|
|
|
keyword_classifier = TransformersQueryClassifier()
|
|
|
|
for query in queries:
|
|
result = keyword_classifier.run(query=query)
|
|
if result[1] == "output_1":
|
|
category = "question/statement"
|
|
else:
|
|
category = "keyword"
|
|
|
|
print(f"Query: {query}, raw_output: {result}, class: {category}")
|
|
|
|
# Here we create the question vs statement query classifier
|
|
|
|
queries = ["Lord Eddard was the father of Arya Stark.","Jon Snow was filmed in United Kingdom.",
|
|
"who is the father of arya stark?","Which country was jon snow filmed in?"]
|
|
|
|
question_classifier = TransformersQueryClassifier(model_name_or_path="shahrukhx01/question-vs-statement-classifier")
|
|
|
|
for query in queries:
|
|
result = question_classifier.run(query=query)
|
|
if result[1] == "output_1":
|
|
category = "question"
|
|
else:
|
|
category = "statement"
|
|
|
|
print(f"Query: {query}, raw_output: {result}, class: {category}")
|
|
|
|
if __name__ == "__main__":
|
|
tutorial14_query_classifier()
|
|
|
|
# This Haystack script was made with love by deepset in Berlin, Germany
|
|
# Haystack: https://github.com/deepset-ai/haystack
|
|
# deepset: https://deepset.ai/
|