haystack/tutorials/Tutorial4_FAQ_style_QA.ipynb
Sara Zan 91cafb49bb
Improve tutorials' output (#1694)
* Modify __str__ and __repr__ for Document and Answer

* Rename QueryClassifier in Tutorial11

* Improve the output of tutorial1

* Make the output of Tutorial8 a bit less dense

* Add a print_questions util to print the output of question generating pipelines

* Replace custom printing with the new utility in Tutorial13

* Ensure all output is printed with minimal details in Tutorial14 and add some titles

* Minor change to print_answers

* Make tutorial3's output the same as tutorial1

* Add __repr__ to Answer and fix to_dict()

* Fix a bug in the Document and Answer's __str__ method

* Improve print_answers, print_documents and print_questions

* Using print_answers in Tutorial7 and fixing typo in the utils

* Remove duplicate line in Tutorial12

* Use print_answers in Tutorial4

* Add explanation of what the documents in the output of the basic QA pipeline are

* Move the fields constant into print_answers

* Normalize all 'minimal' to 'minimum' (they were mixed up)

* Improve the sample output to include all fields from Document and Answer

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-11-09 15:09:26 +01:00

327 lines
9.9 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"source": [
"# Utilizing existing FAQs for Question Answering\n",
"\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deepset-ai/haystack/blob/master/tutorials/Tutorial4_FAQ_style_QA.ipynb)\n",
"\n",
"While *extractive Question Answering* works on pure texts and is therefore more generalizable, there's also a common alternative that utilizes existing FAQ data.\n",
"\n",
"**Pros**:\n",
"\n",
"- Very fast at inference time\n",
"- Utilize existing FAQ data\n",
"- Quite good control over answers\n",
"\n",
"**Cons**:\n",
"\n",
"- Generalizability: We can only answer questions that are similar to existing ones in FAQ\n",
"\n",
"In some use cases, a combination of extractive QA and FAQ-style can also be an interesting option."
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"### Prepare environment\n",
"\n",
"#### Colab: Enable the GPU runtime\n",
"Make sure you enable the GPU runtime to experience decent speed in this tutorial.\n",
"**Runtime -> Change Runtime type -> Hardware accelerator -> GPU**\n",
"\n",
"<img src=\"https://raw.githubusercontent.com/deepset-ai/haystack/master/docs/_src/img/colab_gpu_runtime.jpg\">"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"# Make sure you have a GPU running\n",
"!nvidia-smi"
],
"outputs": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"# Install the latest release of Haystack in your own environment \n",
"#! pip install farm-haystack\n",
"\n",
"# Install the latest master of Haystack\n",
"!pip install grpcio-tools==1.34.1\n",
"!pip install git+https://github.com/deepset-ai/haystack.git\n",
"\n",
"# If you run this notebook on Google Colab, you might need to\n",
"# restart the runtime after installing haystack."
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"from haystack.document_stores import ElasticsearchDocumentStore\n",
"\n",
"from haystack.nodes import EmbeddingRetriever\n",
"import pandas as pd\n",
"import requests\n"
],
"outputs": [],
"metadata": {
"pycharm": {
"is_executing": false
}
}
},
{
"cell_type": "markdown",
"source": [
"### Start an Elasticsearch server\n",
"You can start Elasticsearch on your local machine instance using Docker. If Docker is not readily available in your environment (eg., in Colab notebooks), then you can manually download and execute Elasticsearch from source."
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"# Recommended: Start Elasticsearch using Docker via the Haystack utility function\n",
"from haystack.utils import launch_es\n",
"\n",
"launch_es()"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"# In Colab / No Docker environments: Start Elasticsearch from source\n",
"! wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.9.2-linux-x86_64.tar.gz -q\n",
"! tar -xzf elasticsearch-7.9.2-linux-x86_64.tar.gz\n",
"! chown -R daemon:daemon elasticsearch-7.9.2\n",
"\n",
"import os\n",
"from subprocess import Popen, PIPE, STDOUT\n",
"es_server = Popen(['elasticsearch-7.9.2/bin/elasticsearch'],\n",
" stdout=PIPE, stderr=STDOUT,\n",
" preexec_fn=lambda: os.setuid(1) # as daemon\n",
" )\n",
"# wait until ES has started\n",
"! sleep 30\n"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"### Init the DocumentStore\n",
"In contrast to Tutorial 1 (extractive QA), we:\n",
"\n",
"* specify the name of our `text_field` in Elasticsearch that we want to return as an answer\n",
"* specify the name of our `embedding_field` in Elasticsearch where we'll store the embedding of our question and that is used later for calculating our similarity to the incoming user question\n",
"* set `excluded_meta_data=[\"question_emb\"]` so that we don't return the huge embedding vectors in our search results"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 2,
"source": [
"from haystack.document_stores import ElasticsearchDocumentStore\n",
"document_store = ElasticsearchDocumentStore(host=\"localhost\", username=\"\", password=\"\",\n",
" index=\"document\",\n",
" embedding_field=\"question_emb\",\n",
" embedding_dim=384,\n",
" excluded_meta_data=[\"question_emb\"])"
],
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"04/28/2020 12:27:32 - INFO - elasticsearch - PUT http://localhost:9200/document [status:400 request:0.010s]\n"
]
}
],
"metadata": {
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"### Create a Retriever using embeddings\n",
"Instead of retrieving via Elasticsearch's plain BM25, we want to use vector similarity of the questions (user question vs. FAQ ones).\n",
"We can use the `EmbeddingRetriever` for this purpose and specify a model that we use for the embeddings."
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"retriever = EmbeddingRetriever(document_store=document_store, embedding_model=\"sentence-transformers/all-MiniLM-L6-v2\", use_gpu=True)"
],
"outputs": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"### Prepare & Index FAQ data\n",
"We create a pandas dataframe containing some FAQ data (i.e curated pairs of question + answer) and index those in elasticsearch.\n",
"Here: We download some question-answer pairs related to COVID-19"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"# Download\n",
"temp = requests.get(\"https://raw.githubusercontent.com/deepset-ai/COVID-QA/master/data/faqs/faq_covidbert.csv\")\n",
"open('small_faq_covid.csv', 'wb').write(temp.content)\n",
"\n",
"# Get dataframe with columns \"question\", \"answer\" and some custom metadata\n",
"df = pd.read_csv(\"small_faq_covid.csv\")\n",
"# Minimal cleaning\n",
"df.fillna(value=\"\", inplace=True)\n",
"df[\"question\"] = df[\"question\"].apply(lambda x: x.strip())\n",
"print(df.head())\n",
"\n",
"# Get embeddings for our questions from the FAQs\n",
"questions = list(df[\"question\"].values)\n",
"df[\"question_emb\"] = retriever.embed_queries(texts=questions)\n",
"df = df.rename(columns={\"question\": \"content\"})\n",
"\n",
"# Convert Dataframe to list of dicts and index them in our DocumentStore\n",
"docs_to_index = df.to_dict(orient=\"records\")\n",
"document_store.write_documents(docs_to_index)"
],
"outputs": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"### Ask questions\n",
"Initialize a Pipeline (this time without a reader) and ask questions"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"from haystack.pipelines import FAQPipeline\n",
"pipe = FAQPipeline(retriever=retriever)"
],
"outputs": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"from haystack.utils import print_answers\n",
"\n",
"prediction = pipe.run(query=\"How is the virus spreading?\", params={\"Retriever\": {\"top_k\": 10}})\n",
"print_answers(prediction, details=\"medium\")"
],
"outputs": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"## About us\n",
"\n",
"This [Haystack](https://github.com/deepset-ai/haystack/) notebook was made with love by [deepset](https://deepset.ai/) in Berlin, Germany\n",
"\n",
"We bring NLP to the industry via open source! \n",
"Our focus: Industry specific language models & large scale QA systems. \n",
" \n",
"Some of our other work: \n",
"- [German BERT](https://deepset.ai/german-bert)\n",
"- [GermanQuAD and GermanDPR](https://deepset.ai/germanquad)\n",
"- [FARM](https://github.com/deepset-ai/FARM)\n",
"\n",
"Get in touch:\n",
"[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)\n",
"\n",
"By the way: [we're hiring!](https://www.deepset.ai/jobs)"
],
"metadata": {
"collapsed": false
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}