mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-25 18:00:28 +00:00

* Infer model format for EmbeddingRetriever automatically * Update Documentation & Code Style * Adapt conftest to automatic inference of model_format * Update Documentation & Code Style * Fix tests * Update Documentation & Code Style * Fix tests * Adapt tutorials * Update Documentation & Code Style * Add test for similarity scores with sentence transformers * Adapt doc string and warning message * Update Documentation & Code Style Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
226 lines
9.1 KiB
Python
226 lines
9.1 KiB
Python
from haystack.utils import (
|
|
fetch_archive_from_http,
|
|
convert_files_to_docs,
|
|
clean_wiki_text,
|
|
launch_es,
|
|
print_answers,
|
|
print_documents,
|
|
)
|
|
from haystack.pipelines import Pipeline
|
|
from haystack.document_stores import ElasticsearchDocumentStore
|
|
from haystack.nodes import (
|
|
BM25Retriever,
|
|
EmbeddingRetriever,
|
|
FARMReader,
|
|
TransformersQueryClassifier,
|
|
SklearnQueryClassifier,
|
|
)
|
|
|
|
|
|
def tutorial14_query_classifier():
|
|
|
|
# Download and prepare data - 517 Wikipedia articles for Game of Thrones
|
|
doc_dir = "data/tutorial14"
|
|
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt14.zip"
|
|
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
|
|
|
|
# convert files to dicts containing documents that can be indexed to our datastore
|
|
got_docs = convert_files_to_docs(dir_path=doc_dir, clean_func=clean_wiki_text, split_paragraphs=True)
|
|
|
|
# Initialize DocumentStore and index documents
|
|
launch_es()
|
|
document_store = ElasticsearchDocumentStore()
|
|
document_store.delete_documents()
|
|
document_store.write_documents(got_docs)
|
|
|
|
# Initialize Sparse retriever
|
|
bm25_retriever = BM25Retriever(document_store=document_store)
|
|
|
|
# Initialize dense retriever
|
|
embedding_retriever = EmbeddingRetriever(
|
|
document_store=document_store, embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
|
)
|
|
document_store.update_embeddings(embedding_retriever, update_existing_embeddings=False)
|
|
|
|
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
|
|
|
|
print()
|
|
print("Sklearn keyword classifier")
|
|
print("==========================")
|
|
# Here we build the pipeline
|
|
sklearn_keyword_classifier = Pipeline()
|
|
sklearn_keyword_classifier.add_node(component=SklearnQueryClassifier(), name="QueryClassifier", inputs=["Query"])
|
|
sklearn_keyword_classifier.add_node(
|
|
component=embedding_retriever, name="EmbeddingRetriever", inputs=["QueryClassifier.output_1"]
|
|
)
|
|
sklearn_keyword_classifier.add_node(
|
|
component=bm25_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"]
|
|
)
|
|
sklearn_keyword_classifier.add_node(component=reader, name="QAReader", inputs=["ESRetriever", "EmbeddingRetriever"])
|
|
sklearn_keyword_classifier.draw("pipeline_classifier.png")
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_1 = sklearn_keyword_classifier.run(query="Who is the father of Arya Stark?")
|
|
print("\n===============================")
|
|
print("Embedding Retriever Results" + "\n" + "=" * 15)
|
|
print_answers(res_1, details="minimum")
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_2 = sklearn_keyword_classifier.run(query="arya stark father")
|
|
print("\n===============================")
|
|
print("ES Results" + "\n" + "=" * 15)
|
|
print_answers(res_2, details="minimum")
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_3 = sklearn_keyword_classifier.run(query="which country was jon snow filmed ?")
|
|
print("\n===============================")
|
|
print("Embedding Retriever Results" + "\n" + "=" * 15)
|
|
print_answers(res_3, details="minimum")
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_4 = sklearn_keyword_classifier.run(query="jon snow country")
|
|
print("\n===============================")
|
|
print("ES Results" + "\n" + "=" * 15)
|
|
print_answers(res_4, details="minimum")
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_5 = sklearn_keyword_classifier.run(query="who are the younger brothers of arya stark ?")
|
|
print("\n===============================")
|
|
print("Embedding Retriever Results" + "\n" + "=" * 15)
|
|
print_answers(res_5, details="minimum")
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_6 = sklearn_keyword_classifier.run(query="arya stark younger brothers")
|
|
print("\n===============================")
|
|
print("ES Results" + "\n" + "=" * 15)
|
|
print_answers(res_6, details="minimum")
|
|
|
|
print()
|
|
print("Transformer keyword classifier")
|
|
print("==============================")
|
|
# Here we build the pipeline
|
|
transformer_keyword_classifier = Pipeline()
|
|
transformer_keyword_classifier.add_node(
|
|
component=TransformersQueryClassifier(), name="QueryClassifier", inputs=["Query"]
|
|
)
|
|
transformer_keyword_classifier.add_node(
|
|
component=embedding_retriever, name="EmbeddingRetriever", inputs=["QueryClassifier.output_1"]
|
|
)
|
|
transformer_keyword_classifier.add_node(
|
|
component=bm25_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"]
|
|
)
|
|
transformer_keyword_classifier.add_node(
|
|
component=reader, name="QAReader", inputs=["ESRetriever", "EmbeddingRetriever"]
|
|
)
|
|
transformer_keyword_classifier.draw("pipeline_classifier.png")
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_1 = transformer_keyword_classifier.run(query="Who is the father of Arya Stark?")
|
|
print("\n===============================")
|
|
print("Embedding Retriever Results" + "\n" + "=" * 15)
|
|
print_answers(res_1, details="minimum")
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_2 = transformer_keyword_classifier.run(query="arya stark father")
|
|
print("\n===============================")
|
|
print("ES Results" + "\n" + "=" * 15)
|
|
print_answers(res_2, details="minimum")
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_3 = transformer_keyword_classifier.run(query="which country was jon snow filmed ?")
|
|
print("\n===============================")
|
|
print("Embedding Retriever Results" + "\n" + "=" * 15)
|
|
print_answers(res_3, details="minimum")
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_4 = transformer_keyword_classifier.run(query="jon snow country")
|
|
print("\n===============================")
|
|
print("ES Results" + "\n" + "=" * 15)
|
|
print_answers(res_4, details="minimum")
|
|
|
|
# Run only the dense retriever on the full sentence query
|
|
res_5 = transformer_keyword_classifier.run(query="who are the younger brothers of arya stark ?")
|
|
print("\n===============================")
|
|
print("Embedding Retriever Results" + "\n" + "=" * 15)
|
|
print_answers(res_5, details="minimum")
|
|
|
|
# Run only the sparse retriever on a keyword based query
|
|
res_6 = transformer_keyword_classifier.run(query="arya stark younger brothers")
|
|
print("\n===============================")
|
|
print("ES Results" + "\n" + "=" * 15)
|
|
print_answers(res_6, details="minimum")
|
|
|
|
print()
|
|
print("Transformer question classifier")
|
|
print("===============================")
|
|
|
|
# Here we build the pipeline
|
|
transformer_question_classifier = Pipeline()
|
|
transformer_question_classifier.add_node(component=embedding_retriever, name="DPRRetriever", inputs=["Query"])
|
|
transformer_question_classifier.add_node(
|
|
component=TransformersQueryClassifier(model_name_or_path="shahrukhx01/question-vs-statement-classifier"),
|
|
name="QueryClassifier",
|
|
inputs=["EmbeddingRetriever"],
|
|
)
|
|
transformer_question_classifier.add_node(component=reader, name="QAReader", inputs=["QueryClassifier.output_1"])
|
|
transformer_question_classifier.draw("question_classifier.png")
|
|
|
|
# Run only the QA reader on the question query
|
|
res_1 = transformer_question_classifier.run(query="Who is the father of Arya Stark?")
|
|
print("\n===============================")
|
|
print("Embedding Retriever Results" + "\n" + "=" * 15)
|
|
print_answers(res_1, details="minimum")
|
|
|
|
res_2 = transformer_question_classifier.run(query="Arya Stark was the daughter of a Lord.")
|
|
print("\n===============================")
|
|
print("ES Results" + "\n" + "=" * 15)
|
|
print_documents(res_2)
|
|
|
|
# Here we create the keyword vs question/statement query classifier
|
|
|
|
queries = [
|
|
"arya stark father",
|
|
"jon snow country",
|
|
"who is the father of arya stark",
|
|
"which country was jon snow filmed?",
|
|
]
|
|
|
|
keyword_classifier = TransformersQueryClassifier()
|
|
|
|
for query in queries:
|
|
result = keyword_classifier.run(query=query)
|
|
if result[1] == "output_1":
|
|
category = "question/statement"
|
|
else:
|
|
category = "keyword"
|
|
|
|
print(f"Query: {query}, raw_output: {result}, class: {category}")
|
|
|
|
# Here we create the question vs statement query classifier
|
|
|
|
queries = [
|
|
"Lord Eddard was the father of Arya Stark.",
|
|
"Jon Snow was filmed in United Kingdom.",
|
|
"who is the father of arya stark?",
|
|
"Which country was jon snow filmed in?",
|
|
]
|
|
|
|
question_classifier = TransformersQueryClassifier(model_name_or_path="shahrukhx01/question-vs-statement-classifier")
|
|
|
|
for query in queries:
|
|
result = question_classifier.run(query=query)
|
|
if result[1] == "output_1":
|
|
category = "question"
|
|
else:
|
|
category = "statement"
|
|
|
|
print(f"Query: {query}, raw_output: {result}, class: {category}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
tutorial14_query_classifier()
|
|
|
|
# This Haystack script was made with love by deepset in Berlin, Germany
|
|
# Haystack: https://github.com/deepset-ai/haystack
|
|
# deepset: https://deepset.ai/
|