mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-12-31 09:10:15 +00:00
* Update documentation and remove unused assets. Enhanced the 'agents' and 'components' sections with clearer descriptions and examples. Removed obsolete images and updated links for better navigation. Adjusted formatting for consistency across various documentation pages. * remove dependency * address comments * delete more empty pages * broken link * unduplicate headings * alphabetical components nav
28 lines
956 B
Plaintext
28 lines
956 B
Plaintext
---
|
|
title: "InMemoryDocumentStore"
|
|
id: inmemorydocumentstore
|
|
slug: "/inmemorydocumentstore"
|
|
---
|
|
|
|
# InMemoryDocumentStore
|
|
|
|
The `InMemoryDocumentStore` is a very simple document store with no extra services or dependencies.
|
|
|
|
It is great for experimenting with Haystack, however we do not recommend using it for production.
|
|
|
|
### Initialization
|
|
|
|
`InMemoryDocumentStore` requires no external setup. Simply use this code:
|
|
|
|
```python
|
|
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
|
|
|
document_store = InMemoryDocumentStore()
|
|
```
|
|
|
|
### Supported Retrievers
|
|
|
|
[`InMemoryBM25Retriever`](../pipeline-components/retrievers/inmemorybm25retriever.mdx): A keyword-based Retriever that fetches documents matching a query from a temporary in-memory database.
|
|
|
|
[`InMemoryEmbeddingRetriever`](../pipeline-components/retrievers/inmemoryembeddingretriever.mdx): Compares the query and document embeddings and fetches the documents most relevant to the query.
|