mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-01-01 01:27:28 +00:00
108 lines
4.0 KiB
Plaintext
108 lines
4.0 KiB
Plaintext
---
|
||
title: "PgvectorDocumentStore"
|
||
id: pgvectordocumentstore
|
||
slug: "/pgvectordocumentstore"
|
||
---
|
||
|
||
# PgvectorDocumentStore
|
||
|
||
<div className="key-value-table">
|
||
|
||
| | |
|
||
| --- | --- |
|
||
| API reference | [Pgvector](/reference/integrations-pgvector) |
|
||
| GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/pgvector/ |
|
||
|
||
</div>
|
||
|
||
Pgvector is an extension for PostgreSQL that enhances its capabilities with vector similarity search. It builds upon the classic features of PostgreSQL, such as ACID compliance and point-in-time recovery, and introduces the ability to perform exact and approximate nearest neighbor search using vectors.
|
||
|
||
For more information, see the [pgvector repository](https://github.com/pgvector/pgvector).
|
||
|
||
Pgvector Document Store supports embedding retrieval and metadata filtering.
|
||
|
||
## Installation
|
||
|
||
To quickly set up a PostgreSQL database with pgvector, you can use Docker:
|
||
|
||
```shell
|
||
docker run -d -p 5432:5432 -e POSTGRES_USER=postgres -e POSTGRES_PASSWORD=postgres -e POSTGRES_DB=postgres ankane/pgvector
|
||
```
|
||
|
||
For more information on installing pgvector, visit the [pgvector GitHub repository](https://github.com/pgvector/pgvector).
|
||
|
||
To use pgvector with Haystack, install the `pgvector-haystack` integration:
|
||
|
||
```shell
|
||
pip install pgvector-haystack
|
||
```
|
||
|
||
## Usage
|
||
|
||
### Connection String
|
||
|
||
Define the connection string to your PostgreSQL database in the `PG_CONN_STR` environment variable. Two formats are supported:
|
||
|
||
**URI format:**
|
||
|
||
```shell
|
||
export PG_CONN_STR="postgresql://USER:PASSWORD@HOST:PORT/DB_NAME"
|
||
```
|
||
|
||
**Keyword/value format:**
|
||
|
||
```shell
|
||
export PG_CONN_STR="host=HOST port=PORT dbname=DB_NAME user=USER password=PASSWORD"
|
||
```
|
||
|
||
:::caution Special Characters in Connection URIs
|
||
|
||
When using the URI format, special characters in the password must be [percent-encoded](https://en.wikipedia.org/wiki/Percent-encoding). Otherwise, connection errors may occur. A password like `p=ssword` would cause the error `psycopg.OperationalError: [Errno -2] Name or service not known`.
|
||
|
||
For example, if your password is `p=ssword`, the connection string should be:
|
||
|
||
```shell
|
||
export PG_CONN_STR="postgresql://postgres:p%3Dssword@localhost:5432/postgres"
|
||
```
|
||
|
||
Alternatively, use the keyword/value format, which does not require percent-encoding:
|
||
|
||
```shell
|
||
export PG_CONN_STR="host=localhost port=5432 dbname=postgres user=postgres password=p=ssword"
|
||
```
|
||
|
||
:::
|
||
|
||
For more details, see the [PostgreSQL connection string documentation](https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING).
|
||
|
||
## Initialization
|
||
|
||
Initialize a `PgvectorDocumentStore` object that’s connected to the PostgreSQL database and writes documents to it:
|
||
|
||
```python
|
||
from haystack_integrations.document_stores.pgvector import PgvectorDocumentStore
|
||
from haystack import Document
|
||
|
||
document_store = PgvectorDocumentStore(
|
||
embedding_dimension=768,
|
||
vector_function="cosine_similarity",
|
||
recreate_table=True,
|
||
search_strategy="hnsw",
|
||
)
|
||
|
||
document_store.write_documents([
|
||
Document(content="This is first", embedding=[0.1]*768),
|
||
Document(content="This is second", embedding=[0.3]*768)
|
||
])
|
||
print(document_store.count_documents())
|
||
```
|
||
|
||
To learn more about the initialization parameters, see our [API docs](/reference/integrations-pgvector#pgvectordocumentstore).
|
||
|
||
To properly compute embeddings for your documents, you can use a Document Embedder (for instance, the [`SentenceTransformersDocumentEmbedder`](../pipeline-components/embedders/sentencetransformersdocumentembedder.mdx)).
|
||
|
||
### Supported Retrievers
|
||
|
||
- [`PgvectorEmbeddingRetriever`](../pipeline-components/retrievers/pgvectorembeddingretriever.mdx): An embedding-based Retriever that fetches documents from the Document Store based on a query embedding provided to the Retriever.
|
||
- [`PgvectorKeywordRetriever`](../pipeline-components/retrievers/pgvectorembeddingretriever.mdx): A keyword-based Retriever that fetches documents matching a query from the Pgvector Document Store.
|