haystack/docs-website/docs/document-stores/qdrant-document-store.mdx
Abdallah Taman e4ca3ef149
docs: Documentation examples fixes (#10197)
* Update document embedding values in example

* Update document embeddings of Qdrant example to 768 dimensions

* Remove spaces in embedding initialization

* Update URL in agent output example to remove the 403 error
2025-12-08 10:48:58 +01:00

100 lines
4.1 KiB
Plaintext

---
title: "QdrantDocumentStore"
id: qdrant-document-store
slug: "/qdrant-document-store"
description: "Use the Qdrant vector database with Haystack."
---
# QdrantDocumentStore
Use the Qdrant vector database with Haystack.
<div className="key-value-table">
| | |
| --- | --- |
| API reference | [Qdrant](/reference/integrations-qdrant) |
| GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/qdrant |
</div>
Qdrant is a powerful high-performance, massive-scale vector database. The `QdrantDocumentStore` can be used with any Qdrant instance, in-memory, locally persisted, hosted, and the official Qdrant Cloud.
### Installation
You can simply install the Qdrant Haystack integration with:
```shell
pip install qdrant-haystack
```
### Initialization
The quickest way to use `QdrantDocumentStore` is to create an in-memory instance of it:
```python
from haystack.dataclasses.document import Document
from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
document_store = QdrantDocumentStore(
":memory:",
recreate_index=True,
return_embedding=True,
wait_result_from_api=True,
)
document_store.write_documents([
Document(content="This is first", embedding=[0.0]*768),
Document(content="This is second", embedding=[0.1]*768)
])
print(document_store.count_documents())
```
:::warning Collections Created Outside Haystack
When you create a `QdrantDocumentStore` instance, Haystack takes care of setting up the collection. In general, you cannot use a Qdrant collection created without Haystack with Haystack. If you want to migrate your existing collection, see the sample script at https://github.com/deepset-ai/haystack-core-integrations/blob/main/integrations/qdrant/src/haystack_integrations/document_stores/qdrant/migrate_to_sparse.py.
:::
You can also connect directly to [Qdrant Cloud](https://cloud.qdrant.io/login) directly. Once you have your API key and your cluster URL from the Qdrant dashboard, you can connect like this:
```python
from haystack.dataclasses.document import Document
from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
from haystack.utils import Secret
document_store = QdrantDocumentStore(
url="https://XXXXXXXXX.us-east4-0.gcp.cloud.qdrant.io:6333",
index="your_index_name",
embedding_dim=1024, # based on the embedding model
recreate_index=True, # enable only to recreate the index and not connect to the existing one
api_key = Secret.from_token("YOUR_TOKEN")
)
document_store.write_documents([
Document(content="This is first", embedding=[0.0]*5),
Document(content="This is second", embedding=[0.1, 0.2, 0.3, 0.4, 0.5])
])
print(document_store.count_documents())
```
:::tip More information
You can find more ways to initialize and use QdrantDocumentStore on our [integration page](https://haystack.deepset.ai/integrations/qdrant-document-store).
:::
### Supported Retrievers
- [`QdrantEmbeddingRetriever`](../pipeline-components/retrievers/qdrantembeddingretriever.mdx): Retrieves documents from the `QdrantDocumentStore` based on their dense embeddings (vectors).
- [`QdrantSparseEmbeddingRetriever`](../pipeline-components/retrievers/qdrantsparseembeddingretriever.mdx): Retrieves documents from the `QdrantDocumentStore` based on their sparse embeddings.
- [`QdrantHybridRetriever`](../pipeline-components/retrievers/qdranthybridretriever.mdx): Retrieves documents from the `QdrantDocumentStore` based on both dense and sparse embeddings.
:::note Sparse Embedding Support
To use Sparse Embedding support, you need to initialize the `QdrantDocumentStore` with `use_sparse_embeddings=True`, which is `False` by default.
If you want to use Document Store or collection previously created with this feature disabled, you must migrate the existing data. You can do this by taking advantage of the `migrate_to_sparse_embeddings_support` utility function.
:::
## Additional References
🧑‍🍳 Cookbook: [Sparse Embedding Retrieval with Qdrant and FastEmbed](https://haystack.deepset.ai/cookbook/sparse_embedding_retrieval)