2025-11-04 19:18:53 +01:00

126 lines
5.3 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: "JinaDocumentEmbedder"
id: jinadocumentembedder
slug: "/jinadocumentembedder"
description: "This component computes the embeddings of a list of documents and stores the obtained vectors in the embedding field of each document. It uses Jina AI Embeddings models. The vectors computed by this component are necessary to perform embedding retrieval on a collection of documents. At retrieval time, the vector representing the query is compared with those of the documents to find the most similar or relevant documents."
---
# JinaDocumentEmbedder
This component computes the embeddings of a list of documents and stores the obtained vectors in the embedding field of each document. It uses Jina AI Embeddings models. The vectors computed by this component are necessary to perform embedding retrieval on a collection of documents. At retrieval time, the vector representing the query is compared with those of the documents to find the most similar or relevant documents.
| | |
| --- | --- |
| **Most common position in a pipeline** | Before a [`DocumentWriter`](../writers/documentwriter.mdx) in an indexing pipeline |
| **Mandatory init variables** | "api_key": The Jina API key. Can be set with `JINA_API_KEY` env var. |
| **Mandatory run variables** | “documents”: A list of documents |
| **Output variables** | “documents”: A list of documents (enriched with embeddings) <br /> <br />”meta”: A dictionary of metadata |
| **API reference** | [Jina](/reference/integrations-jina) |
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/jina |
## Overview
`JinaDocumentEmbedder` enriches the metadata of documents with an embedding of their content. To embed a string, you should use the [`JinaTextEmbedder`](jinatextembedder.mdx). To see the list of compatible Jina Embeddings models, head to Jina AIs [website](https://jina.ai/embeddings/). The default model for `JinaDocumentEmbedder` is `jina-embeddings-v2-base-en`.
To start using this integration with Haystack, install the package with:
```shell
pip install jina-haystack
```
The component uses a `JINA_API_KEY` environment variable by default. Otherwise, you can pass an API key at initialization with `api_key`:
```python
embedder = JinaDocumentEmbedder(api_key=Secret.from_token("<your-api-key>"))
```
To get a Jina Embeddings API key, head to https://jina.ai/embeddings/.
### Embedding Metadata
Text documents often come with a set of metadata. If they are distinctive and semantically meaningful, you can embed them along with the text of the document to improve retrieval.
You can do this easily by using the Document Embedder:
```python
from haystack import Document
from haystack_integrations.components.embedders.jina import JinaDocumentEmbedder
doc = Document(content="some text",
meta={"title": "relevant title",
"page number": 18})
embedder = JinaDocumentEmbedder(api_key=Secret.from_token("<your-api-key>"), meta_fields_to_embed=["title"])
docs_w_embeddings = embedder.run(documents=[doc])["documents"]
```
## Usage
### On its own
Here is how you can use the component on its own:
```python
from haystack_integrations.components.embedders.jina import JinaDocumentEmbedder
doc = Document(content="I love pizza!")
document_embedder = JinaDocumentEmbedder(api_key=Secret.from_token("<your-api-key>"))
result = document_embedder.run([doc])
print(result['documents'][0].embedding)
## [0.017020374536514282, -0.023255806416273117, ...]
```
:::note
We recommend setting JINA_API_KEY as an environment variable instead of setting it as a parameter.
:::
### In a pipeline
```python
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack_integrations.components.embedders.jina import JinaDocumentEmbedder
from haystack_integrations.components.embedders.jina import JinaTextEmbedder
from haystack.components.writers import DocumentWriter
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
documents = [Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities")]
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("embedder", JinaDocumentEmbedder(api_key=Secret.from_token("<your-api-key>")))
indexing_pipeline.add_component("writer", DocumentWriter(document_store=document_store))
indexing_pipeline.connect("embedder", "writer")
indexing_pipeline.run({"embedder": {"documents": documents}})
query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", JinaTextEmbedder(api_key=Secret.from_token("<your-api-key>")))
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
query = "Who lives in Berlin?"
result = query_pipeline.run({"text_embedder":{"text": query}})
print(result['retriever']['documents'][0])
## Document(id=..., mimetype: 'text/plain',
## text: 'My name is Wolfgang and I live in Berlin')
```
## Additional References
🧑‍🍳 Cookbook: [Using the Jina-embeddings-v2-base-en model in a Haystack RAG pipeline for legal document analysis](https://haystack.deepset.ai/cookbook/jina-embeddings-v2-legal-analysis-rag)