mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-01-01 01:27:28 +00:00
* add missing headers * external integrations header row * implement headerless tables * more tables with key-value pairs
79 lines
3.2 KiB
Plaintext
79 lines
3.2 KiB
Plaintext
---
|
||
title: "PgvectorDocumentStore"
|
||
id: pgvectordocumentstore
|
||
slug: "/pgvectordocumentstore"
|
||
description: ""
|
||
---
|
||
|
||
# PgvectorDocumentStore
|
||
|
||
<div className="key-value-table">
|
||
|
||
| | |
|
||
| :------------ | :------------------------------------------------------------------------------------------ |
|
||
| API reference | [Pgvector](/reference/integrations-pgvector) |
|
||
| GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/pgvector/ |
|
||
|
||
</div>
|
||
|
||
Pgvector is an extension for PostgreSQL that enhances its capabilities with vector similarity search. It builds upon the classic features of PostgreSQL, such as ACID compliance and point-in-time recovery, and introduces the ability to perform exact and approximate nearest neighbor search using vectors.
|
||
|
||
For more information, see the [pgvector repository](https://github.com/pgvector/pgvector).
|
||
|
||
Pgvector Document Store supports embedding retrieval and metadata filtering.
|
||
|
||
## Installation
|
||
|
||
To quickly set up a PostgreSQL database with pgvector, you can use Docker:
|
||
|
||
```shell
|
||
docker run -d -p 5432:5432 -e POSTGRES_USER=postgres -e POSTGRES_PASSWORD=postgres -e POSTGRES_DB=postgres ankane/pgvector
|
||
```
|
||
|
||
For more information on installing pgvector, visit the [pgvector GitHub repository](https://github.com/pgvector/pgvector).
|
||
|
||
To use pgvector with Haystack, install the `pgvector-haystack` integration:
|
||
|
||
```shell
|
||
pip install pgvector-haystack
|
||
```
|
||
|
||
## Usage
|
||
|
||
Define the connection string to your PostgreSQL database in the `PG_CONN_STR` environment variable. For example:
|
||
|
||
```shell Shell
|
||
export PG_CONN_STR="postgresql://postgres:postgres@localhost:5432/postgres"
|
||
```
|
||
|
||
## Initialization
|
||
|
||
Initialize a `PgvectorDocumentStore` object that’s connected to the PostgreSQL database and writes documents to it:
|
||
|
||
```python
|
||
from haystack_integrations.document_stores.pgvector import PgvectorDocumentStore
|
||
from haystack import Document
|
||
|
||
document_store = PgvectorDocumentStore(
|
||
embedding_dimension=768,
|
||
vector_function="cosine_similarity",
|
||
recreate_table=True,
|
||
search_strategy="hnsw",
|
||
)
|
||
|
||
document_store.write_documents([
|
||
Document(content="This is first", embedding=[0.1]*768),
|
||
Document(content="This is second", embedding=[0.3]*768)
|
||
])
|
||
print(document_store.count_documents())
|
||
```
|
||
|
||
To learn more about the initialization parameters, see our [API docs](/reference/integrations-pgvector#pgvectordocumentstore).
|
||
|
||
To properly compute embeddings for your documents, you can use a Document Embedder (for instance, the [`SentenceTransformersDocumentEmbedder`](../pipeline-components/embedders/sentencetransformersdocumentembedder.mdx)).
|
||
|
||
### Supported Retrievers
|
||
|
||
- [`PgvectorEmbeddingRetriever`](../pipeline-components/retrievers/pgvectorembeddingretriever.mdx): An embedding-based Retriever that fetches documents from the Document Store based on a query embedding provided to the Retriever.
|
||
- [`PgvectorKeywordRetriever`](../pipeline-components/retrievers/pgvectorembeddingretriever.mdx): A keyword-based Retriever that fetches documents matching a query from the Pgvector Document Store.
|