Daria Fokina 510d063612
style(docs): params as inline code (#10017)
* params as inline code

* more params

* even more params

* last params
2025-11-05 14:49:38 +01:00

119 lines
5.6 KiB
Plaintext

---
title: "NvidiaChatGenerator"
id: nvidiachatgenerator
slug: "/nvidiachatgenerator"
description: "This Generator enables chat completion using Nvidia-hosted models."
---
# NvidiaChatGenerator
This Generator enables chat completion using Nvidia-hosted models.
<div className="key-value-table">
| | |
| -------------------------------------- | ---------------------------------------------------------------------------------------- |
| **Most common position in a pipeline** | After a [ChatPromptBuilder](../builders/chatpromptbuilder.mdx) |
| **Mandatory init variables** | `api_key`: API key for the NVIDIA NIM. Can be set with `NVIDIA_API_KEY` env var. |
| **Mandatory run variables** | `messages`: A list of [ChatMessage](../../concepts/data-classes/chatmessage.mdx) objects |
| **Output variables** | `replies`: A list of [ChatMessage](../../concepts/data-classes/chatmessage.mdx) objects |
| **API reference** | [NVIDIA API](https://build.nvidia.com/models) |
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/nvidia |
</div>
## Overview
`NvidiaChatGenerator` enables chat completions using NVIDIA's generative models via the NVIDIA API. It is compatible with the [ChatMessage](../../concepts/data-classes/chatmessage.mdx) format for both input and output, ensuring seamless integration in chat-based pipelines.
You can use LLMs self-hosted with NVIDIA NIM or models hosted on the [NVIDIA API catalog](https://build.nvidia.com/explore/discover). The default model for this component is `meta/llama-3.1-8b-instruct`.
To use this integration, you must have a NVIDIA API key. You can provide it with the `NVIDIA_API_KEY` environment variable or by using a [Secret](../../concepts/secret-management.mdx).
### Tool Support
`NvidiaChatGenerator` supports function calling through the `tools` parameter, which accepts flexible tool configurations:
- **A list of Tool objects**: Pass individual tools as a list
- **A single Toolset**: Pass an entire Toolset directly
- **Mixed Tools and Toolsets**: Combine multiple Toolsets with standalone tools in a single list
This allows you to organize related tools into logical groups while also including standalone tools as needed.
```python
from haystack.tools import Tool, Toolset
from haystack_integrations.components.generators.nvidia import NvidiaChatGenerator
# Create individual tools
weather_tool = Tool(name="weather", description="Get weather info", ...)
news_tool = Tool(name="news", description="Get latest news", ...)
# Group related tools into a toolset
math_toolset = Toolset([add_tool, subtract_tool, multiply_tool])
# Pass mixed tools and toolsets to the generator
generator = NvidiaChatGenerator(
tools=[math_toolset, weather_tool, news_tool] # Mix of Toolset and Tool objects
)
```
For more details on working with tools, see the [Tool](../../tools/tool.mdx) and [Toolset](../../tools/toolset.mdx) documentation.
### Streaming
This generator supports [streaming](guides-to-generators/choosing-the-right-generator.mdx#streaming-support) responses from the LLM. To enable streaming, pass a callable to the `streaming_callback` parameter during initialization.
## Usage
To start using `NvidiaChatGenerator`, first, install the `nvidia-haystack` package:
```shell
pip install nvidia-haystack
```
You can use the `NvidiaChatGenerator` with all the LLMs available in the [NVIDIA API catalog](https://docs.api.nvidia.com/nim/reference) or a model deployed with NVIDIA NIM. Follow the [NVIDIA NIM for LLMs Playbook](https://developer.nvidia.com/docs/nemo-microservices/inference/playbooks/nmi_playbook.html) to learn how to deploy your desired model on your infrastructure.
### On its own
To use LLMs from the NVIDIA API catalog, you need to specify the correct `api_url` if needed (the default one is `https://integrate.api.nvidia.com/v1`), and your API key. You can get your API key directly from the [catalog website](https://build.nvidia.com/explore/discover).
```python
from haystack_integrations.components.generators.nvidia import NvidiaChatGenerator
from haystack.dataclasses import ChatMessage
generator = NvidiaChatGenerator(
model="meta/llama-3.1-8b-instruct", # or any supported NVIDIA model
api_key=Secret.from_env_var("NVIDIA_API_KEY")
)
messages = [ChatMessage.from_user("What's Natural Language Processing? Be brief.")]
result = generator.run(messages)
print(result["replies"])
print(result["meta"])
```
### In a Pipeline
```python
from haystack import Pipeline
from haystack.components.builders import ChatPromptBuilder
from haystack.dataclasses import ChatMessage
from haystack_integrations.components.generators.nvidia import NvidiaChatGenerator
from haystack.utils import Secret
pipe = Pipeline()
pipe.add_component("prompt_builder", ChatPromptBuilder())
pipe.add_component("llm", NvidiaChatGenerator(
model="meta/llama-3.1-8b-instruct",
api_key=Secret.from_env_var("NVIDIA_API_KEY")
))
pipe.connect("prompt_builder", "llm")
country = "Germany"
system_message = ChatMessage.from_system("You are an assistant giving out valuable information to language learners.")
messages = [system_message, ChatMessage.from_user("What's the official language of {{ country }}?")]
res = pipe.run(data={"prompt_builder": {"template_variables": {"country": country}, "template": messages}})
print(res)
```