Daria Fokina 510d063612
style(docs): params as inline code (#10017)
* params as inline code

* more params

* even more params

* last params
2025-11-05 14:49:38 +01:00

142 lines
5.6 KiB
Plaintext

---
title: "TogetherAIChatGenerator"
id: togetheraichatgenerator
slug: "/togetheraichatgenerator"
description: "This component enables chat completion using models hosted on Together AI."
---
# TogetherAIChatGenerator
This component enables chat completion using models hosted on Together AI.
<div className="key-value-table">
| | |
| --- | --- |
| **Most common position in a pipeline** | After a [ChatPromptBuilder](../builders/chatpromptbuilder.mdx) |
| **Mandatory init variables** | `api_key`: A Together API key. Can be set with `TOGETHER_API_KEY` env var. |
| **Mandatory run variables** | `messages`: A list of [`ChatMessage`](../../concepts/data-classes/chatmessage.mdx) objects |
| **Output variables** | `replies`: A list of [`ChatMessage`](../../concepts/data-classes/chatmessage.mdx) objects |
| **API reference** | [TogetherAI](/reference/integrations-togetherai) |
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/togetherai |
</div>
## Overview
`TogetherAIChatGenerator` supports models hosted on [Together AI](https://docs.together.ai/intro), such as `meta-llama/Llama-3.3-70B-Instruct-Turbo`. For the full list of supported models, see [Together AI documentation](https://docs.together.ai/docs/chat-models).
This component needs a list of [`ChatMessage`](../../concepts/data-classes/chatmessage.mdx) objects to operate. `ChatMessage` is a data class that contains a message, a role (who generated the message, such as `user`, `assistant`, `system`, `function`), and optional metadata.
You can pass any text generation parameters valid for the Together AI chat completion API directly to this component using the `generation_kwargs` parameter in `__init__` or the `generation_kwargs` parameter in `run` method. For more details on the parameters supported by the Together AI API, see [Together AI API documentation](https://docs.together.ai/reference/chat-completions-1).
To use this integration, you need to have an active TogetherAI subscription with sufficient credits and an API key. You can provide it with:
- The `TOGETHER_API_KEY` environment variable (recommended)
- The `api_key` init parameter and Haystack [Secret](../../concepts/secret-management.mdx) API: `Secret.from_token("your-api-key-here")`
By default, the component uses Together AI's OpenAI-compatible base URL `https://api.together.xyz/v1`, which you can override with `api_base_url` if needed.
### Tool Support
`TogetherAIChatGenerator` supports function calling through the `tools` parameter, which accepts flexible tool configurations:
- **A list of Tool objects**: Pass individual tools as a list
- **A single Toolset**: Pass an entire Toolset directly
- **Mixed Tools and Toolsets**: Combine multiple Toolsets with standalone tools in a single list
This allows you to organize related tools into logical groups while also including standalone tools as needed.
```python
from haystack.tools import Tool, Toolset
from haystack_integrations.components.generators.togetherai import TogetherAIChatGenerator
# Create individual tools
weather_tool = Tool(name="weather", description="Get weather info", ...)
news_tool = Tool(name="news", description="Get latest news", ...)
# Group related tools into a toolset
math_toolset = Toolset([add_tool, subtract_tool, multiply_tool])
# Pass mixed tools and toolsets to the generator
generator = TogetherAIChatGenerator(
tools=[math_toolset, weather_tool, news_tool] # Mix of Toolset and Tool objects
)
```
For more details on working with tools, see the [Tool](../../tools/tool.mdx) and [Toolset](../../tools/toolset.mdx) documentation.
### Streaming
`TogetherAIChatGenerator` supports [streaming](guides-to-generators/choosing-the-right-generator.mdx#streaming-support) responses from the LLM, allowing tokens to be emitted as they are generated. To enable streaming, pass a callable to the `streaming_callback` parameter during initialization.
## Usage
Install the `togetherai-haystack` package to use the `TogetherAIChatGenerator`:
```shell
pip install togetherai-haystack
```
### On its own
Basic usage:
```python
from haystack.dataclasses import ChatMessage
from haystack_integrations.components.generators.togetherai import TogetherAIChatGenerator
client = TogetherAIChatGenerator()
response = client.run(
[ChatMessage.from_user("What are Agentic Pipelines? Be brief.")]
)
print(response["replies"][0].text)
```
With streaming:
```python
from haystack.dataclasses import ChatMessage
from haystack_integrations.components.generators.togetherai import TogetherAIChatGenerator
client = TogetherAIChatGenerator(
model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
streaming_callback=lambda chunk: print(chunk.content, end="", flush=True),
)
response = client.run(
[ChatMessage.from_user("What are Agentic Pipelines? Be brief.")]
)
# check the model used for the response
print("\n\nModel used:", response["replies"][0].meta.get("model"))
```
### In a Pipeline
```python
from haystack import Pipeline
from haystack.components.builders import ChatPromptBuilder
from haystack.dataclasses import ChatMessage
from haystack_integrations.components.generators.togetherai import TogetherAIChatGenerator
prompt_builder = ChatPromptBuilder()
llm = TogetherAIChatGenerator(model="meta-llama/Llama-3.3-70B-Instruct-Turbo")
pipe = Pipeline()
pipe.add_component("builder", prompt_builder)
pipe.add_component("llm", llm)
pipe.connect("builder.prompt", "llm.messages")
messages = [
ChatMessage.from_system("Give brief answers."),
ChatMessage.from_user("Tell me about {{city}}"),
]
response = pipe.run(
data={"builder": {"template": messages,
"template_variables": {"city": "Berlin"}}}
)
print(response)
```