Haystack Bot 6355f6deae
Promote unstable docs for Haystack 2.20 (#10080)
Co-authored-by: anakin87 <44616784+anakin87@users.noreply.github.com>
2025-11-13 18:00:45 +01:00

70 lines
2.9 KiB
Plaintext

---
title: "TextFileToDocument"
id: textfiletodocument
slug: "/textfiletodocument"
description: "Converts text files to documents."
---
# TextFileToDocument
Converts text files to documents.
<div className="key-value-table">
| | |
| --- | --- |
| **Most common position in a pipeline** | Before [PreProcessors](../preprocessors.mdx) or right at the beginning of an indexing pipeline |
| **Mandatory run variables** | `sources`: A list of paths to text files you want to convert |
| **Output variables** | `documents`: A list of documents |
| **API reference** | [Converters](/reference/converters-api) |
| **GitHub link** | https://github.com/deepset-ai/haystack/blob/main/haystack/components/converters/txt.py |
</div>
## Overview
The `TextFileToDocument` component converts text files into documents. You can use it in an indexing pipeline to index the contents of text files into a Document Store. It takes a list of file paths or [ByteStream](../../concepts/data-classes.mdx#bytestream) objects as input and outputs the converted result as a list of documents. Optionally, you can attach metadata to the documents through the `meta` input parameter.
When you initialize the component, you can optionally set the default encoding of the text files through the `encoding` parameter. If you don't provide any value, the component uses `"utf-8"` by default. Note that if the encoding is specified in the metadata of an input ByteStream, it will override this parameter's setting.
## Usage
### On its own
```python
from pathlib import Path
from haystack.components.converters import TextFileToDocument
converter = TextFileToDocument()
docs = converter.run(sources=[Path("my_file.txt")])
```
### In a pipeline
```python
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.converters import TextFileToDocument
from haystack.components.preprocessors import DocumentCleaner
from haystack.components.preprocessors import DocumentSplitter
from haystack.components.writers import DocumentWriter
document_store = InMemoryDocumentStore()
pipeline = Pipeline()
pipeline.add_component("converter", TextFileToDocument())
pipeline.add_component("cleaner", DocumentCleaner())
pipeline.add_component("splitter", DocumentSplitter(split_by="sentence", split_length=5))
pipeline.add_component("writer", DocumentWriter(document_store=document_store))
pipeline.connect("converter", "cleaner")
pipeline.connect("cleaner", "splitter")
pipeline.connect("splitter", "writer")
pipeline.run({"converter": {"sources": file_names}})
```
## Additional References
:notebook: Tutorial: [Preprocessing Different File Types](https://haystack.deepset.ai/tutorials/30_file_type_preprocessing_index_pipeline)