mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-01-05 03:28:09 +00:00
59 lines
14 KiB
Plaintext
59 lines
14 KiB
Plaintext
---
|
||
title: "Embedders"
|
||
id: embedders
|
||
slug: "/embedders"
|
||
description: "Embedders in Haystack transform texts or documents into vector representations using pre-trained models. You can then use the embedding for tasks like question answering, information retrieval, and more."
|
||
---
|
||
|
||
# Embedders
|
||
|
||
Embedders in Haystack transform texts or documents into vector representations using pre-trained models. You can then use the embedding for tasks like question answering, information retrieval, and more.
|
||
|
||
:::info
|
||
For general guidance on how to choose an Embedder that would be right for you, read our [Choosing the Right Embedder](embedders/choosing-the-right-embedder.mdx) page.
|
||
:::
|
||
|
||
These are the Embedders available in Haystack:
|
||
|
||
| Embedder | Description |
|
||
| --- | --- |
|
||
| [AmazonBedrockTextEmbedder](embedders/amazonbedrocktextembedder.mdx) | Computes embeddings for text (such as a query) using models through Amazon Bedrock API. |
|
||
| [AmazonBedrockDocumentEmbedder](embedders/amazonbedrockdocumentembedder.mdx) | Computes embeddings for documents using models through Amazon Bedrock API. |
|
||
| [AmazonBedrockDocumentImageEmbedder](embedders/amazonbedrockdocumentimageembedder.mdx) | Computes image embeddings for a document. |
|
||
| [AzureOpenAITextEmbedder](embedders/azureopenaitextembedder.mdx) | Computes embeddings for text (such as a query) using OpenAI models deployed through Azure. |
|
||
| [AzureOpenAIDocumentEmbedder](embedders/azureopenaidocumentembedder.mdx) | Computes embeddings for documents using OpenAI models deployed through Azure. |
|
||
| [CohereTextEmbedder](embedders/coheretextembedder.mdx) | Embeds a simple string (such as a query) with a Cohere model. Requires an API key from Cohere |
|
||
| [CohereDocumentEmbedder](embedders/coheredocumentembedder.mdx) | Embeds a list of documents with a Cohere model. Requires an API key from Cohere. |
|
||
| [CohereDocumentImageEmbedder](embedders/coheredocumentimageembedder.mdx) | Computes the image embeddings of a list of documents and stores the obtained vectors in the embedding field of each document. |
|
||
| [FastembedTextEmbedder](embedders/fastembedtextembedder.mdx) | Computes the embeddings of a string using embedding models supported by Fastembed. |
|
||
| [FastembedDocumentEmbedder](embedders/fastembeddocumentembedder.mdx) | Computes the embeddings of a list of documents using the models supported by Fastembed. |
|
||
| [FastembedSparseTextEmbedder](embedders/fastembedsparsetextembedder.mdx) | Embeds a simple string (such as a query) into a sparse vector using the models supported by Fastembed. |
|
||
| [FastembedSparseDocumentEmbedder](embedders/fastembedsparsedocumentembedder.mdx) | Enriches a list of documents with their sparse embeddings using the models supported by Fastembed. |
|
||
| [GoogleGenAITextEmbedder](embedders/googlegenaitextembedder.mdx) | Embeds a simple string (such as a query) with a Google AI model. Requires an API key from Google. |
|
||
| [GoogleGenAIDocumentEmbedder](embedders/googlegenaidocumentembedder.mdx) | Embeds a list of documents with a Google AI model. Requires an API key from Google. |
|
||
| [HuggingFaceAPIDocumentEmbedder](embedders/huggingfaceapidocumentembedder.mdx) | Computes document embeddings using various Hugging Face APIs. |
|
||
| [HuggingFaceAPITextEmbedder](embedders/huggingfaceapitextembedder.mdx) | Embeds strings using various Hugging Face APIs. |
|
||
| [JinaTextEmbedder](embedders/jinatextembedder.mdx) | Embeds a simple string (such as a query) with a Jina AI Embeddings model. Requires an API key from Jina AI. |
|
||
| [JinaDocumentEmbedder](embedders/jinadocumentembedder.mdx) | Embeds a list of documents with a Jina AI Embeddings model. Requires an API key from Jina AI. |
|
||
| [JinaDocumentImageEmbedder](embedders/jinadocumentimageembedder.mdx) | Computes the image embeddings of a list of documents and stores the obtained vectors in the embedding field of each document. |
|
||
| [MistralTextEmbedder](embedders/mistraltextembedder.mdx) | Transforms a string into a vector using the Mistral API and models. |
|
||
| [MistralDocumentEmbedder](embedders/mistraldocumentembedder.mdx) | Computes the embeddings of a list of documents using the Mistral API and models. |
|
||
| [NvidiaTextEmbedder](embedders/nvidiatextembedder.mdx) | Embeds a simple string (such as a query) into a vector. |
|
||
| [NvidiaDocumentEmbedder](embedders/nvidiadocumentembedder.mdx) | Enriches the metadata of documents with an embedding of their content. |
|
||
| [OllamaTextEmbedder](embedders/ollamatextembedder.mdx) | Computes the embeddings of a string using embedding models compatible with the Ollama Library. |
|
||
| [OllamaDocumentEmbedder](embedders/ollamadocumentembedder.mdx) | Computes the embeddings of a list of documents using embedding models compatible with the Ollama Library. |
|
||
| [OpenAIDocumentEmbedder](embedders/openaidocumentembedder.mdx) | Embeds a list of documents with an OpenAI embedding model. Requires an API key from an active OpenAI account. |
|
||
| [OpenAITextEmbedder](embedders/openaitextembedder.mdx) | Embeds a simple string (such as a query) with an OpenAI embedding model. Requires an API key from an active OpenAI account. |
|
||
| [OptimumTextEmbedder](embedders/optimumtextembedder.mdx) | Embeds text using models loaded with the Hugging Face Optimum library. |
|
||
| [OptimumDocumentEmbedder](embedders/optimumdocumentembedder.mdx) | Computes documents’ embeddings using models loaded with the Hugging Face Optimum library. |
|
||
| [SentenceTransformersTextEmbedder](embedders/sentencetransformerstextembedder.mdx) | Embeds a simple string (such as a query) using a Sentence Transformer model. |
|
||
| [SentenceTransformersDocumentEmbedder](embedders/sentencetransformersdocumentembedder.mdx) | Embeds a list of documents with a Sentence Transformer model. |
|
||
| [SentenceTransformersDocumentImageEmbedder](embedders/sentencetransformersdocumentimageembedder.mdx) | Computes the image embeddings of a list of documents and stores the obtained vectors in the embedding field of each document. |
|
||
| [SentenceTransformersSparseTextEmbedder](embedders/sentencetransformerssparsetextembedder.mdx) | Embeds a simple string (such as a query) into a sparse vector using Sentence Transformers models. |
|
||
| [SentenceTransformersSparseDocumentEmbedder](embedders/sentencetransformerssparsedocumentembedder.mdx) | Enriches a list of documents with their sparse embeddings using Sentence Transformers models. |
|
||
| [STACKITTextEmbedder](embedders/stackittextembedder.mdx) | Enables text embedding using the STACKIT API. |
|
||
| [STACKITDocumentEmbedder](embedders/stackitdocumentembedder.mdx) | Enables document embedding using the STACKIT API. |
|
||
| [VertexAITextEmbedder](embedders/vertexaitextembedder.mdx) | Computes embeddings for text (such as a query) using models through VertexAI Embeddings API. **_This integration will be deprecated soon. We recommend using [GoogleGenAITextEmbedder](embedders/googlegenaitextembedder.mdx) integration instead._** |
|
||
| [VertexAIDocumentEmbedder](embedders/vertexaidocumentembedder.mdx) | Computes embeddings for documents using models through VertexAI Embeddings API. **_This integration will be deprecated soon. We recommend using [GoogleGenAIDocumentEmbedder](embedders/googlegenaidocumentembedder.mdx) integration instead._** |
|
||
| [WatsonxTextEmbedder](embedders/watsonxtextembedder.mdx) | Computes embeddings for text (such as a query) using IBM Watsonx models. |
|
||
| [WatsonxDocumentEmbedder](embedders/watsonxdocumentembedder.mdx) | Computes embeddings for documents using IBM Watsonx models. | |