Haystack Bot 6355f6deae
Promote unstable docs for Haystack 2.20 (#10080)
Co-authored-by: anakin87 <44616784+anakin87@users.noreply.github.com>
2025-11-13 18:00:45 +01:00

134 lines
5.4 KiB
Plaintext

---
title: "WatsonxDocumentEmbedder"
id: watsonxdocumentembedder
slug: "/watsonxdocumentembedder"
description: "The vectors computed by this component are necessary to perform embedding retrieval on a collection of documents. At retrieval time, the vector that represents the query is compared with those of the documents to find the most similar or relevant documents."
---
# WatsonxDocumentEmbedder
The vectors computed by this component are necessary to perform embedding retrieval on a collection of documents. At retrieval time, the vector that represents the query is compared with those of the documents to find the most similar or relevant documents.
<div className="key-value-table">
| | |
| --- | --- |
| **Most common position in a pipeline** | Before a [`DocumentWriter`](../writers/documentwriter.mdx) in an indexing pipeline |
| **Mandatory init variables** | `api_key`: The IBM Cloud API key. Can be set with `WATSONX_API_KEY` env var. <br /> <br />`project_id`: The IBM Cloud project ID. Can be set with `WATSONX_PROJECT_ID` env var. |
| **Mandatory run variables** | `documents`: A list of documents to be embedded |
| **Output variables** | `documents`: A list of documents (enriched with embeddings) <br /> <br />`meta`: A dictionary of metadata strings |
| **API reference** | [Watsonx](/reference/integrations-watsonx) |
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/watsonx |
</div>
## Overview
`WatsonxDocumentEmbedder` enriches the metadata of documents with an embedding of their content. To embed a string, you should use the [`WatsonxTextEmbedder`](watsonxtextembedder.mdx).
The component supports IBM watsonx.ai embedding models such as `ibm/slate-30m-english-rtrvr` and similar. The default model is `ibm/slate-30m-english-rtrvr`. This list of all supported models can be found in IBM's [model documentation](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx).
To start using this integration with Haystack, install it with:
```shell
pip install watsonx-haystack
```
The component uses `WATSONX_API_KEY` and `WATSONX_PROJECT_ID` environment variables by default. Otherwise, you can pass API credentials at initialization with `api_key` and `project_id`:
```python
embedder = WatsonxDocumentEmbedder(
api_key=Secret.from_token("<your-api-key>"),
project_id=Secret.from_token("<your-project-id>")
)
```
To get IBM Cloud credentials, head over to https://cloud.ibm.com/.
### Embedding Metadata
Text documents often come with a set of metadata. If they are distinctive and semantically meaningful, you can embed them along with the text of the document to improve retrieval.
You can do this by using the Document Embedder:
```python
from haystack import Document
from haystack_integrations.components.embedders.watsonx.document_embedder import WatsonxDocumentEmbedder
from haystack.utils import Secret
doc = Document(content="some text", meta={"title": "relevant title", "page number": 18})
embedder = WatsonxDocumentEmbedder(
api_key=Secret.from_env_var("WATSONX_API_KEY"),
project_id=Secret.from_env_var("WATSONX_PROJECT_ID"),
meta_fields_to_embed=["title"]
)
docs_w_embeddings = embedder.run(documents=[doc])["documents"]
```
## Usage
Install the `watsonx-haystack` package to use the `WatsonxDocumentEmbedder`:
```shell
pip install watsonx-haystack
```
### On its own
Remember to set `WATSONX_API_KEY` and `WATSONX_PROJECT_ID` as environment variables first, or pass them in directly.
Here is how you can use the component on its own:
```python
from haystack import Document
from haystack_integrations.components.embedders.watsonx.document_embedder import WatsonxDocumentEmbedder
doc = Document(content="I love pizza!")
embedder = WatsonxDocumentEmbedder()
result = embedder.run([doc])
print(result['documents'][0].embedding)
## [-0.453125, 1.2236328, 2.0058594, 0.67871094...]
```
### In a pipeline
```python
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.writers import DocumentWriter
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
from haystack_integrations.components.embedders.watsonx.document_embedder import WatsonxDocumentEmbedder
from haystack_integrations.components.embedders.watsonx.text_embedder import WatsonxTextEmbedder
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
documents = [Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities")]
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("embedder", WatsonxDocumentEmbedder())
indexing_pipeline.add_component("writer", DocumentWriter(document_store=document_store))
indexing_pipeline.connect("embedder", "writer")
indexing_pipeline.run({"embedder": {"documents": documents}})
query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", WatsonxTextEmbedder())
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
query = "Who lives in Berlin?"
result = query_pipeline.run({"text_embedder":{"text": query}})
print(result['retriever']['documents'][0])
## Document(id=..., text: 'My name is Wolfgang and I live in Berlin')
```