Haystack Bot 6355f6deae
Promote unstable docs for Haystack 2.20 (#10080)
Co-authored-by: anakin87 <44616784+anakin87@users.noreply.github.com>
2025-11-13 18:00:45 +01:00

141 lines
6.6 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: "AmazonBedrockChatGenerator"
id: amazonbedrockchatgenerator
slug: "/amazonbedrockchatgenerator"
description: "This component enables chat completion using models through Amazon Bedrock service."
---
# AmazonBedrockChatGenerator
This component enables chat completion using models through Amazon Bedrock service.
<div className="key-value-table">
| | |
| --- | --- |
| **Most common position in a pipeline** | After a [ChatPromptBuilder](../builders/chatpromptbuilder.mdx) |
| **Mandatory init variables** | `model`: The model to use <br /> <br />`aws_access_key_id`: AWS access key ID. Can be set with `AWS_ACCESS_KEY_ID` env var. <br /> <br />`aws_secret_access_key`: AWS secret access key. Can be set with `AWS_SECRET_ACCESS_KEY` env var. <br /> <br />`aws_region_name`: AWS region name. Can be set with `AWS_DEFAULT_REGION` env var. |
| **Mandatory run variables** | `messages`: A list of [`ChatMessage`](../../concepts/data-classes/chatmessage.mdx) instances |
| **Output variables** | `replies`: A list of [`ChatMessage`](../../concepts/data-classes/chatmessage.mdx) objects <br /> <br />`meta`: A list of dictionaries with the metadata associated with each reply, such as token count, finish reason, and so on |
| **API reference** | [Amazon Bedrock](/reference/integrations-amazon-bedrock) |
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/amazon_bedrock |
</div>
[Amazon Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html) is a fully managed service that makes high-performing foundation models from leading AI startups and Amazon available through a unified API. You can choose from various foundation models to find the one best suited for your use case.
`AmazonBedrockChatGenerator` enables chat completion using chat models from Anthropic, Cohere, Meta Llama 2, and Mistral with a single component.
The models that we currently support are Anthropic's _Claude_, Meta's _Llama 2_, and _Mistral_, but as more chat models are added, their support will be provided through `AmazonBedrockChatGenerator`.
## Overview
This component uses AWS for authentication. You can use the AWS CLI to authenticate through your IAM. For more information on setting up an IAM identity-based policy, see the [official documentation](https://docs.aws.amazon.com/bedrock/latest/userguide/security_iam_id-based-policy-examples.html).
:::info Using AWS CLI
Consider using AWS CLI as a more straightforward tool to manage your AWS services. With AWS CLI, you can quickly configure your [boto3 credentials](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html). This way, you won't need to provide detailed authentication parameters when initializing Amazon Bedrock Generator in Haystack.
:::
To use this component for text generation, initialize an AmazonBedrockGenerator with the model name, the AWS credentials (`AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, `AWS_DEFAULT_REGION`) should be set as environment variables, be configured as described above or passed as [Secret](../../concepts/secret-management.mdx) arguments. Note, make sure the region you set supports Amazon Bedrock.
### Tool Support
`AmazonBedrockChatGenerator` supports function calling through the `tools` parameter, which accepts flexible tool configurations:
- **A list of Tool objects**: Pass individual tools as a list
- **A single Toolset**: Pass an entire Toolset directly
- **Mixed Tools and Toolsets**: Combine multiple Toolsets with standalone tools in a single list
This allows you to organize related tools into logical groups while also including standalone tools as needed.
```python
from haystack.tools import Tool, Toolset
from haystack_integrations.components.generators.amazon_bedrock import AmazonBedrockChatGenerator
# Create individual tools
weather_tool = Tool(name="weather", description="Get weather info", ...)
news_tool = Tool(name="news", description="Get latest news", ...)
# Group related tools into a toolset
math_toolset = Toolset([add_tool, subtract_tool, multiply_tool])
# Pass mixed tools and toolsets to the generator
generator = AmazonBedrockChatGenerator(
model="anthropic.claude-3-5-sonnet-20240620-v1:0",
tools=[math_toolset, weather_tool, news_tool] # Mix of Toolset and Tool objects
)
```
For more details on working with tools, see the [Tool](../../tools/tool.mdx) and [Toolset](../../tools/toolset.mdx) documentation.
### Streaming
This Generator supports [streaming](guides-to-generators/choosing-the-right-generator.mdx#streaming-support) the tokens from the LLM directly in output. To do so, pass a function to the `streaming_callback` init parameter.
## Usage
To start using Amazon Bedrock with Haystack, install the `amazon-bedrock-haystack` package:
```shell
pip install amazon-bedrock-haystack
```
### On its own
Basic usage:
```python
from haystack_integrations.components.generators.amazon_bedrock import AmazonBedrockChatGenerator
from haystack.dataclasses import ChatMessage
generator = AmazonBedrockChatGenerator(model="meta.llama2-70b-chat-v1")
messages = [ChatMessage.from_system("You are a helpful assistant that answers question in Spanish only"), ChatMessage.from_user("What's Natural Language Processing? Be brief.")]
response = generator.run(messages)
print(response)
```
With multimodal inputs:
```python
from haystack.dataclasses import ChatMessage, ImageContent
from haystack_integrations.components.generators.amazon_bedrock import AmazonBedrockChatGenerator
llm = AmazonBedrockChatGenerator(model="anthropic.claude-3-5-sonnet-20240620-v1:0")
image = ImageContent.from_file_path("apple.jpg")
user_message = ChatMessage.from_user(content_parts=[
"What does the image show? Max 5 words.",
image
])
response = llm.run([user_message])["replies"][0].text
print(response)
# Red apple on straw mat.
```
### In a pipeline
In a RAG pipeline:
```python
from haystack import Pipeline
from haystack.components.builders import ChatPromptBuilder
from haystack.dataclasses import ChatMessage
from haystack_integrations.components.generators.amazon_bedrock import AmazonBedrockChatGenerator
pipe = Pipeline()
pipe.add_component("prompt_builder", ChatPromptBuilder())
pipe.add_component("llm", AmazonBedrockChatGenerator(model="meta.llama2-70b-chat-v1"))
pipe.connect("prompt_builder", "llm")
country = "Germany"
system_message = ChatMessage.from_system("You are an assistant giving out valuable information to language learners.")
messages = [system_message, ChatMessage.from_user("What's the official language of {{ country }}?")]
res = pipe.run(data={"prompt_builder": {"template_variables": {"country": country}, "template": messages}})
print(res)
```