mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-01-06 03:57:19 +00:00
250 lines
8.8 KiB
Plaintext
250 lines
8.8 KiB
Plaintext
---
|
||
title: "GoogleGenAIChatGenerator"
|
||
id: googlegenaichatgenerator
|
||
slug: "/googlegenaichatgenerator"
|
||
description: "This component enables chat completion using Google Gemini models through Google Gen AI SDK."
|
||
---
|
||
|
||
# GoogleGenAIChatGenerator
|
||
|
||
This component enables chat completion using Google Gemini models through Google Gen AI SDK.
|
||
|
||
<div className="key-value-table">
|
||
|
||
| | |
|
||
| --- | --- |
|
||
| **Most common position in a pipeline** | After a [ChatPromptBuilder](../builders/chatpromptbuilder.mdx) |
|
||
| **Mandatory init variables** | `api_key`: A Google API key. Can be set with `GOOGLE_API_KEY` env var. |
|
||
| **Mandatory run variables** | `messages`: A list of [`ChatMessage`](../../concepts/data-classes/chatmessage.mdx) objects representing the chat |
|
||
| **Output variables** | `replies`: A list of alternative replies of the model to the input chat |
|
||
| **API reference** | [Google GenAI](/reference/integrations-google-genai) |
|
||
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/google_genai |
|
||
|
||
</div>
|
||
|
||
## Overview
|
||
|
||
`GoogleGenAIChatGenerator` supports `gemini-2.0-flash` (default), `gemini-2.5-pro-exp-03-25`, `gemini-1.5-pro`, and `gemini-1.5-flash` models.
|
||
|
||
### Tool Support
|
||
|
||
`GoogleGenAIChatGenerator` supports function calling through the `tools` parameter, which accepts flexible tool configurations:
|
||
|
||
- **A list of Tool objects**: Pass individual tools as a list
|
||
- **A single Toolset**: Pass an entire Toolset directly
|
||
- **Mixed Tools and Toolsets**: Combine multiple Toolsets with standalone tools in a single list
|
||
|
||
This allows you to organize related tools into logical groups while also including standalone tools as needed.
|
||
|
||
```python
|
||
from haystack.tools import Tool, Toolset
|
||
from haystack_integrations.components.generators.google_genai import GoogleGenAIChatGenerator
|
||
|
||
# Create individual tools
|
||
weather_tool = Tool(name="weather", description="Get weather info", ...)
|
||
news_tool = Tool(name="news", description="Get latest news", ...)
|
||
|
||
# Group related tools into a toolset
|
||
math_toolset = Toolset([add_tool, subtract_tool, multiply_tool])
|
||
|
||
# Pass mixed tools and toolsets to the generator
|
||
generator = GoogleGenAIChatGenerator(
|
||
tools=[math_toolset, weather_tool, news_tool] # Mix of Toolset and Tool objects
|
||
)
|
||
```
|
||
|
||
For more details on working with tools, see the [Tool](../../tools/tool.mdx) and [Toolset](../../tools/toolset.mdx) documentation.
|
||
|
||
### Streaming
|
||
|
||
This Generator supports [streaming](guides-to-generators/choosing-the-right-generator.mdx#streaming-support) the tokens from the LLM directly in output. To do so, pass a function to the `streaming_callback` init parameter.
|
||
|
||
### Authentication
|
||
|
||
Google Gen AI is compatible with both the Gemini Developer API and the Vertex AI API.
|
||
|
||
To use this component with the Gemini Developer API and get an API key, visit [Google AI Studio](https://aistudio.google.com/).
|
||
To use this component with the Vertex AI API, visit [Google Cloud > Vertex AI](https://cloud.google.com/vertex-ai).
|
||
|
||
The component uses a `GOOGLE_API_KEY` or `GEMINI_API_KEY` environment variable by default. Otherwise, you can pass an API key at initialization with a [Secret](../../concepts/secret-management.mdx) and `Secret.from_token` static method:
|
||
|
||
```python
|
||
embedder = GoogleGenAITextEmbedder(api_key=Secret.from_token("<your-api-key>"))
|
||
```
|
||
|
||
The following examples show how to use the component with the Gemini Developer API and the Vertex AI API.
|
||
|
||
#### Gemini Developer API (API Key Authentication)
|
||
|
||
```python
|
||
from haystack_integrations.components.generators.google_genai import GoogleGenAIChatGenerator
|
||
|
||
## set the environment variable (GOOGLE_API_KEY or GEMINI_API_KEY)
|
||
chat_generator = GoogleGenAIChatGenerator()
|
||
```
|
||
|
||
#### Vertex AI (Application Default Credentials)
|
||
|
||
```python
|
||
from haystack_integrations.components.generators.google_genai import GoogleGenAIChatGenerator
|
||
|
||
## Using Application Default Credentials (requires gcloud auth setup)
|
||
chat_generator = GoogleGenAIChatGenerator(
|
||
api="vertex",
|
||
vertex_ai_project="my-project",
|
||
vertex_ai_location="us-central1",
|
||
)
|
||
```
|
||
|
||
#### Vertex AI (API Key Authentication)
|
||
|
||
```python
|
||
from haystack_integrations.components.generators.google_genai import GoogleGenAIChatGenerator
|
||
|
||
## set the environment variable (GOOGLE_API_KEY or GEMINI_API_KEY)
|
||
chat_generator = GoogleGenAIChatGenerator(api="vertex")
|
||
```
|
||
|
||
## Usage
|
||
|
||
To start using this integration, install the package with:
|
||
|
||
```shell
|
||
pip install google-genai-haystack
|
||
```
|
||
|
||
### On its own
|
||
|
||
```python
|
||
from haystack.dataclasses.chat_message import ChatMessage
|
||
from haystack_integrations.components.generators.google_genai import GoogleGenAIChatGenerator
|
||
|
||
## Initialize the chat generator
|
||
chat_generator = GoogleGenAIChatGenerator()
|
||
|
||
## Generate a response
|
||
messages = [ChatMessage.from_user("Tell me about movie Shawshank Redemption")]
|
||
response = chat_generator.run(messages=messages)
|
||
print(response["replies"][0].text)
|
||
```
|
||
|
||
With multimodal inputs:
|
||
|
||
```python
|
||
from haystack.dataclasses import ChatMessage, ImageContent
|
||
from haystack_integrations.components.generators.google_genai import GoogleGenAIChatGenerator
|
||
|
||
llm = GoogleGenAIChatGenerator()
|
||
|
||
image = ImageContent.from_file_path("apple.jpg")
|
||
user_message = ChatMessage.from_user(content_parts=[
|
||
"What does the image show? Max 5 words.",
|
||
image
|
||
])
|
||
|
||
response = llm.run([user_message])["replies"][0].text
|
||
print(response)
|
||
|
||
# Red apple on straw.
|
||
```
|
||
|
||
You can also easily use function calls. First, define the function locally and convert into a [Tool](https://www.notion.so/docs/tool):
|
||
|
||
```python
|
||
from typing import Annotated
|
||
from haystack.tools import create_tool_from_function
|
||
|
||
## example function to get the current weather
|
||
def get_current_weather(
|
||
location: Annotated[str, "The city for which to get the weather, e.g. 'San Francisco'"] = "Munich",
|
||
unit: Annotated[str, "The unit for the temperature, e.g. 'celsius'"] = "celsius",
|
||
) -> str:
|
||
return f"The weather in {location} is sunny. The temperature is 20 {unit}."
|
||
|
||
tool = create_tool_from_function(get_current_weather)
|
||
```
|
||
|
||
Create a new instance of `GoogleGenAIChatGenerator` to set the tools and a [ToolInvoker](https://www.notion.so/docs/toolinvoker) to invoke the tools.
|
||
|
||
```python
|
||
import os
|
||
from haystack_integrations.components.generators.google_genai import GoogleGenAIChatGenerator
|
||
from haystack.components.tools import ToolInvoker
|
||
|
||
os.environ["GOOGLE_API_KEY"] = "<MY_API_KEY>"
|
||
|
||
genai_chat = GoogleGenAIChatGenerator(tools=[tool])
|
||
|
||
tool_invoker = ToolInvoker(tools=[tool])
|
||
```
|
||
|
||
And then ask a question:
|
||
|
||
```python
|
||
from haystack.dataclasses import ChatMessage
|
||
|
||
messages = [ChatMessage.from_user("What is the temperature in celsius in Berlin?")]
|
||
res = genai_chat.run(messages=messages)
|
||
|
||
print(res["replies"][0].tool_calls)
|
||
>>> [ToolCall(tool_name='get_current_weather',
|
||
>>> arguments={'unit': 'celsius', 'location': 'Berlin'}, id=None)]
|
||
|
||
tool_messages = tool_invoker.run(messages=replies)["tool_messages"]
|
||
messages = user_message + replies + tool_messages
|
||
|
||
messages += res["replies"][0] + [ChatMessage.from_function(content=weather, name="get_current_weather")]
|
||
|
||
final_replies = genai_chat.run(messages=messages)["replies"]
|
||
print(final_replies[0].text)
|
||
>>> The temperature in Berlin is 20 degrees Celsius.
|
||
```
|
||
|
||
#### With Streaming
|
||
|
||
```python
|
||
from haystack.dataclasses.chat_message import ChatMessage
|
||
from haystack.dataclasses import StreamingChunk
|
||
from haystack_integrations.components.generators.google_genai import GoogleGenAIChatGenerator
|
||
|
||
def streaming_callback(chunk: StreamingChunk):
|
||
print(chunk.content, end='', flush=True)
|
||
|
||
## Initialize with streaming callback
|
||
chat_generator = GoogleGenAIChatGenerator(
|
||
streaming_callback=streaming_callback
|
||
)
|
||
|
||
## Generate a streaming response
|
||
messages = [ChatMessage.from_user("Write a short story")]
|
||
response = chat_generator.run(messages=messages)
|
||
## Text will stream in real-time through the callback
|
||
```
|
||
|
||
### In a pipeline
|
||
|
||
```python
|
||
import os
|
||
from haystack.components.builders import ChatPromptBuilder
|
||
from haystack.dataclasses import ChatMessage
|
||
from haystack import Pipeline
|
||
from haystack_integrations.components.generators.google_genai import GoogleGenAIChatGenerator
|
||
|
||
## no parameter init, we don't use any runtime template variables
|
||
prompt_builder = ChatPromptBuilder()
|
||
|
||
os.environ["GOOGLE_API_KEY"] = "<MY_API_KEY>"
|
||
genai_chat = GoogleGenAIChatGenerator()
|
||
|
||
pipe = Pipeline()
|
||
pipe.add_component("prompt_builder", prompt_builder)
|
||
pipe.add_component("genai", genai_chat)
|
||
pipe.connect("prompt_builder.prompt", "genai.messages")
|
||
|
||
location = "Rome"
|
||
messages = [ChatMessage.from_user("Tell me briefly about {{location}} history")]
|
||
res = pipe.run(data={"prompt_builder": {"template_variables":{"location": location}, "template": messages}})
|
||
|
||
print(res)
|
||
```
|