Haystack Bot a471fbfebe
Promote unstable docs for Haystack 2.21 (#10204)
Co-authored-by: vblagoje <458335+vblagoje@users.noreply.github.com>
2025-12-08 20:09:00 +01:00

76 lines
2.9 KiB
Plaintext

---
title: "PyPDFToDocument"
id: pypdftodocument
slug: "/pypdftodocument"
description: "A component that converts PDF files to Documents."
---
# PyPDFToDocument
A component that converts PDF files to Documents.
<div className="key-value-table">
| | |
| --- | --- |
| **Most common position in a pipeline** | Before [PreProcessors](../preprocessors.mdx) , or right at the beginning of an indexing pipeline |
| **Mandatory run variables** | `sources`: PDF file paths or [`ByteStream`](../../concepts/data-classes.mdx#bytestream) objects |
| **Output variables** | `documents`: A list of documents |
| **API reference** | [Converters](/reference/converters-api) |
| **GitHub link** | https://github.com/deepset-ai/haystack/blob/main/haystack/components/converters/pypdf.py |
</div>
## Overview
The `PyPDFToDocument` component converts PDF files into documents. You can use it in an indexing pipeline to index the contents of a PDF file into a Document Store. It takes a list of file paths or [ByteStream](../../concepts/data-classes.mdx#bytestream) objects as input and outputs the converted result as a list of documents. Optionally, you can attach metadata to the documents through the `meta` input parameter.
## Usage
You need to install `pypdf` package to use the `PyPDFToDocument` converter:
```shell
pip install pypdf
```
### On its own
```python
from pathlib import Path
from haystack.components.converters import PyPDFToDocument
converter = PyPDFToDocument()
docs = converter.run(sources=[Path("my_file.pdf")])
```
### In a pipeline
```python
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.converters import PyPDFToDocument
from haystack.components.preprocessors import DocumentCleaner
from haystack.components.preprocessors import DocumentSplitter
from haystack.components.writers import DocumentWriter
document_store = InMemoryDocumentStore()
pipeline = Pipeline()
pipeline.add_component("converter", PyPDFToDocument())
pipeline.add_component("cleaner", DocumentCleaner())
pipeline.add_component("splitter", DocumentSplitter(split_by="sentence", split_length=5))
pipeline.add_component("writer", DocumentWriter(document_store=document_store))
pipeline.connect("converter", "cleaner")
pipeline.connect("cleaner", "splitter")
pipeline.connect("splitter", "writer")
pipeline.run({"converter": {"sources": file_names}})
```
## Additional References
🧑‍🍳 Cookbook: [PDF-Based Question Answering with Amazon Bedrock and Haystack](https://haystack.deepset.ai/cookbook/amazon_bedrock_for_documentation_qa)
📓 Tutorial: [Preprocessing Different File Types](https://haystack.deepset.ai/tutorials/30_file_type_preprocessing_index_pipeline)