mirror of
				https://github.com/deepset-ai/haystack.git
				synced 2025-10-31 17:59:27 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			77 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| import logging
 | |
| import subprocess
 | |
| import time
 | |
| 
 | |
| from haystack import Finder
 | |
| from haystack.database.elasticsearch import ElasticsearchDocumentStore
 | |
| from haystack.indexing.cleaning import clean_wiki_text
 | |
| from haystack.indexing.utils import convert_files_to_dicts, fetch_archive_from_http
 | |
| from haystack.reader.farm import FARMReader
 | |
| from haystack.reader.transformers import TransformersReader
 | |
| from haystack.utils import print_answers
 | |
| from haystack.retriever.sparse import ElasticsearchRetriever
 | |
| from haystack.retriever.dense import DensePassageRetriever
 | |
| 
 | |
| LAUNCH_ELASTICSEARCH = False
 | |
| 
 | |
| # Start an Elasticsearch server
 | |
| # You can start Elasticsearch on your local machine instance using Docker. If Docker is not readily available in
 | |
| # your environment (eg., in Colab notebooks), then you can manually download and execute Elasticsearch from source.
 | |
| 
 | |
| if LAUNCH_ELASTICSEARCH:
 | |
|     logging.info("Starting Elasticsearch ...")
 | |
|     status = subprocess.run(
 | |
|         ['docker run -d -p 9200:9200 -e "discovery.type=single-node" elasticsearch:7.6.2'], shell=True
 | |
|     )
 | |
|     if status.returncode:
 | |
|         raise Exception("Failed to launch Elasticsearch. If you want to connect to an existing Elasticsearch instance"
 | |
|                         "then set LAUNCH_ELASTICSEARCH in the script to False.")
 | |
|     time.sleep(15)
 | |
| 
 | |
| # Connect to Elasticsearch
 | |
| document_store = ElasticsearchDocumentStore(host="localhost", username="", password="",
 | |
|                                             index="document", embedding_dim=768, embedding_field="embedding")
 | |
| 
 | |
| # ## Cleaning & indexing documents
 | |
| # Let's first get some documents that we want to query
 | |
| doc_dir = "data/article_txt_got"
 | |
| s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip"
 | |
| fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
 | |
| 
 | |
| # convert files to dicts containing documents that can be indexed to our datastore
 | |
| dicts = convert_files_to_dicts(dir_path=doc_dir, clean_func=clean_wiki_text, split_paragraphs=True)
 | |
| 
 | |
| # Now, let's write the docs to our DB.
 | |
| document_store.write_documents(dicts[:16])
 | |
| 
 | |
| 
 | |
| ### Retriever
 | |
| retriever = DensePassageRetriever(document_store=document_store, embedding_model="dpr-bert-base-nq",
 | |
|                                   do_lower_case=True, gpu=True)
 | |
| # Important:
 | |
| # Now that after we have the DPR initialized, we need to call update_embeddings() to iterate over all
 | |
| # previously indexed documents and update their embedding representation.
 | |
| # While this can be a time consuming operation (depending on corpus size), it only needs to be done once.
 | |
| # At query time, we only need to embed the query and compare it the existing doc embeddings which is very fast.
 | |
| document_store.update_embeddings(retriever)
 | |
| 
 | |
| ### Reader
 | |
| # Load a  local model or any of the QA models on
 | |
| # Hugging Face's model hub (https://huggingface.co/models)
 | |
| reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=True)
 | |
| 
 | |
| ### Finder
 | |
| # The Finder sticks together reader and retriever in a pipeline to answer our actual questions.
 | |
| finder = Finder(reader, retriever)
 | |
| 
 | |
| ### Voilà! Ask a question!
 | |
| # You can configure how many candidates the reader and retriever shall return
 | |
| # The higher top_k_retriever, the better (but also the slower) your answers.
 | |
| prediction = finder.get_answers(question="Who is the father of Arya Stark?", top_k_retriever=10, top_k_reader=5)
 | |
| 
 | |
| 
 | |
| # prediction = finder.get_answers(question="Who created the Dothraki vocabulary?", top_k_reader=5)
 | |
| # prediction = finder.get_answers(question="Who is the sister of Sansa?", top_k_reader=5)
 | |
| 
 | |
| print_answers(prediction, details="minimal")
 | 
