mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-27 19:00:35 +00:00

* added instruction_prompt and update defaults * Change back max_tokens * Code formatting * Starting to update instruction_prompt to be a PromptTemplate * Using PromptTemplate in OpenAIAnswerGenerator * Removed hardcoded value * pylint and make examples and examples_context optional prompt parameters * Added new test for when prompt length goes past max token limit * Improve doc strings. * Make "text-davinci-003" the new default model * Renaming variable to prompt_template and name to question-answering-with-examples * Reduced repetitive code. * Added some comments to explain key logic for future debuggers * Update docs for max_tokens and increase defaul * Updating variable name to prompt_template and docs. * Updated test and handled Answer case where no documents are used. * Slight update to docs. * Adding more doc strings * lg updates * Blackify --------- Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai> Co-authored-by: agnieszka-m <amarzec13@gmail.com>
160 lines
7.2 KiB
Python
160 lines
7.2 KiB
Python
import os
|
|
import sys
|
|
from typing import List
|
|
|
|
import pytest
|
|
|
|
from haystack.schema import Document
|
|
from haystack.nodes.answer_generator import Seq2SeqGenerator, OpenAIAnswerGenerator
|
|
from haystack.pipelines import TranslationWrapperPipeline, GenerativeQAPipeline
|
|
|
|
import logging
|
|
|
|
|
|
# Keeping few (retriever,document_store) combination to reduce test time
|
|
@pytest.mark.skipif(sys.platform in ["win32", "cygwin"], reason="Causes OOM on windows github runner")
|
|
@pytest.mark.integration
|
|
@pytest.mark.generator
|
|
@pytest.mark.parametrize("retriever,document_store", [("embedding", "memory")], indirect=True)
|
|
def test_generator_pipeline_with_translator(
|
|
document_store, retriever, rag_generator, en_to_de_translator, de_to_en_translator, docs_with_true_emb
|
|
):
|
|
document_store.write_documents(docs_with_true_emb)
|
|
query = "Was ist die Hauptstadt der Bundesrepublik Deutschland?"
|
|
base_pipeline = GenerativeQAPipeline(retriever=retriever, generator=rag_generator)
|
|
pipeline = TranslationWrapperPipeline(
|
|
input_translator=de_to_en_translator, output_translator=en_to_de_translator, pipeline=base_pipeline
|
|
)
|
|
output = pipeline.run(query=query, params={"Generator": {"top_k": 2}, "Retriever": {"top_k": 1}})
|
|
answers = output["answers"]
|
|
assert len(answers) == 2
|
|
assert "berlin" in answers[0].answer
|
|
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.generator
|
|
def test_rag_token_generator(rag_generator, docs_with_true_emb):
|
|
query = "What is capital of the Germany?"
|
|
generated_docs = rag_generator.predict(query=query, documents=docs_with_true_emb, top_k=1)
|
|
answers = generated_docs["answers"]
|
|
assert len(answers) == 1
|
|
assert "berlin" in answers[0].answer
|
|
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.generator
|
|
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
|
|
@pytest.mark.parametrize("retriever", ["embedding"], indirect=True)
|
|
def test_generator_pipeline(document_store, retriever, rag_generator, docs_with_true_emb):
|
|
document_store.write_documents(docs_with_true_emb)
|
|
query = "What is capital of the Germany?"
|
|
pipeline = GenerativeQAPipeline(retriever=retriever, generator=rag_generator)
|
|
output = pipeline.run(query=query, params={"Generator": {"top_k": 2}, "Retriever": {"top_k": 1}})
|
|
answers = output["answers"]
|
|
assert len(answers) == 2
|
|
assert "berlin" in answers[0].answer
|
|
for doc_idx, document in enumerate(output["documents"]):
|
|
assert document.id == answers[0].document_ids[doc_idx]
|
|
assert document.meta == answers[0].meta["doc_metas"][doc_idx]
|
|
|
|
|
|
@pytest.mark.skipif(sys.platform in ["win32", "cygwin"], reason="Causes OOM on windows github runner")
|
|
@pytest.mark.integration
|
|
@pytest.mark.generator
|
|
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
|
|
@pytest.mark.parametrize("retriever", ["retribert", "dpr_lfqa"], indirect=True)
|
|
@pytest.mark.parametrize("lfqa_generator", ["yjernite/bart_eli5", "vblagoje/bart_lfqa"], indirect=True)
|
|
@pytest.mark.embedding_dim(128)
|
|
def test_lfqa_pipeline(document_store, retriever, lfqa_generator, docs_with_true_emb):
|
|
# reuse existing DOCS but regenerate embeddings with retribert
|
|
docs: List[Document] = []
|
|
for d in docs_with_true_emb:
|
|
docs.append(Document(content=d.content))
|
|
document_store.write_documents(docs)
|
|
document_store.update_embeddings(retriever)
|
|
query = "Tell me about Berlin?"
|
|
pipeline = GenerativeQAPipeline(generator=lfqa_generator, retriever=retriever)
|
|
output = pipeline.run(query=query, params={"top_k": 1})
|
|
answers = output["answers"]
|
|
assert len(answers) == 1, answers
|
|
assert "Germany" in answers[0].answer, answers[0].answer
|
|
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.generator
|
|
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
|
|
@pytest.mark.parametrize("retriever", ["retribert"], indirect=True)
|
|
@pytest.mark.embedding_dim(128)
|
|
def test_lfqa_pipeline_unknown_converter(document_store, retriever, docs_with_true_emb):
|
|
# reuse existing DOCS but regenerate embeddings with retribert
|
|
docs: List[Document] = []
|
|
for d in docs_with_true_emb:
|
|
docs.append(Document(content=d.content))
|
|
document_store.write_documents(docs)
|
|
document_store.update_embeddings(retriever)
|
|
seq2seq = Seq2SeqGenerator(model_name_or_path="patrickvonplaten/t5-tiny-random")
|
|
query = "Tell me about Berlin?"
|
|
pipeline = GenerativeQAPipeline(retriever=retriever, generator=seq2seq)
|
|
|
|
# raises exception as we don't have converter for "patrickvonplaten/t5-tiny-random" in Seq2SeqGenerator
|
|
with pytest.raises(Exception) as exception_info:
|
|
output = pipeline.run(query=query, params={"top_k": 1})
|
|
assert "doesn't have input converter registered for patrickvonplaten/t5-tiny-random" in str(exception_info.value)
|
|
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.generator
|
|
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
|
|
@pytest.mark.parametrize("retriever", ["retribert"], indirect=True)
|
|
@pytest.mark.embedding_dim(128)
|
|
def test_lfqa_pipeline_invalid_converter(document_store, retriever, docs_with_true_emb):
|
|
# reuse existing DOCS but regenerate embeddings with retribert
|
|
docs: List[Document] = []
|
|
for d in docs_with_true_emb:
|
|
docs.append(Document(content=d.content))
|
|
document_store.write_documents(docs)
|
|
document_store.update_embeddings(retriever)
|
|
|
|
class _InvalidConverter:
|
|
def __call__(self, some_invalid_para: str, another_invalid_param: str) -> None:
|
|
pass
|
|
|
|
seq2seq = Seq2SeqGenerator(
|
|
model_name_or_path="patrickvonplaten/t5-tiny-random", input_converter=_InvalidConverter()
|
|
)
|
|
query = "This query will fail due to InvalidConverter used"
|
|
pipeline = GenerativeQAPipeline(retriever=retriever, generator=seq2seq)
|
|
|
|
# raises exception as we are using invalid method signature in _InvalidConverter
|
|
with pytest.raises(Exception) as exception_info:
|
|
output = pipeline.run(query=query, params={"top_k": 1})
|
|
assert "does not have a valid __call__ method signature" in str(exception_info.value)
|
|
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.skipif(
|
|
not os.environ.get("OPENAI_API_KEY", None),
|
|
reason="No OpenAI API key provided. Please export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
|
|
)
|
|
def test_openai_answer_generator(openai_generator, docs):
|
|
prediction = openai_generator.predict(query="Who lives in Berlin?", documents=docs, top_k=1)
|
|
assert len(prediction["answers"]) == 1
|
|
assert "Carla" in prediction["answers"][0].answer
|
|
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.skipif(
|
|
not os.environ.get("OPENAI_API_KEY", None),
|
|
reason="No OpenAI API key provided. Please export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
|
|
)
|
|
def test_openai_answer_generator_max_token(docs, caplog):
|
|
openai_generator = OpenAIAnswerGenerator(
|
|
api_key=os.environ.get("OPENAI_API_KEY", ""), model="text-babbage-001", top_k=1
|
|
)
|
|
openai_generator.MAX_TOKENS_LIMIT = 116
|
|
with caplog.at_level(logging.INFO):
|
|
prediction = openai_generator.predict(query="Who lives in Berlin?", documents=docs, top_k=1)
|
|
assert "Skipping all of the provided Documents" in caplog.text
|
|
assert len(prediction["answers"]) == 1
|
|
# Can't easily check content of answer since it is generative and can change between runs
|