haystack/tutorials/Tutorial5_Evaluation.py

91 lines
4.1 KiB
Python

from haystack.database.elasticsearch import ElasticsearchDocumentStore
from haystack.indexing.utils import fetch_archive_from_http
from haystack.retriever.elasticsearch import ElasticsearchRetriever
from haystack.reader.farm import FARMReader
from haystack.finder import Finder
from farm.utils import initialize_device_settings
import logging
import subprocess
import time
logger = logging.getLogger(__name__)
##############################################
# Settings
##############################################
LAUNCH_ELASTICSEARCH = True
eval_retriever_only = False
eval_reader_only = False
eval_both = True
##############################################
# Code
##############################################
device, n_gpu = initialize_device_settings(use_cuda=True)
# Start an Elasticsearch server
# You can start Elasticsearch on your local machine instance using Docker. If Docker is not readily available in
# your environment (eg., in Colab notebooks), then you can manually download and execute Elasticsearch from source.
if LAUNCH_ELASTICSEARCH:
logging.info("Starting Elasticsearch ...")
status = subprocess.run(
['docker run -d -p 9200:9200 -e "discovery.type=single-node" elasticsearch:7.6.2'], shell=True
)
if status.returncode:
raise Exception("Failed to launch Elasticsearch. If you want to connect to an existing Elasticsearch instance"
"then set LAUNCH_ELASTICSEARCH in the script to False.")
time.sleep(30)
# Download evaluation data, which is a subset of Natural Questions development set containing 50 documents
doc_dir = "../data/nq"
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/nq_dev_subset.json.zip"
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
# Connect to Elasticsearch
document_store = ElasticsearchDocumentStore(host="localhost", username="", password="", index="document", create_index=False)
# Add evaluation data to Elasticsearch database
if LAUNCH_ELASTICSEARCH:
document_store.add_eval_data("../data/nq/nq_dev_subset.json")
else:
logger.warning("Since we already have a running ES instance we should not index the same documents again."
"If you still want to do this call: 'document_store.add_eval_data('../data/nq/nq_dev_subset.json')' manually ")
# Initialize Retriever
retriever = ElasticsearchRetriever(document_store=document_store)
# Initialize Reader
reader = FARMReader("deepset/roberta-base-squad2")
# Initialize Finder which sticks together Reader and Retriever
finder = Finder(reader, retriever)
## Evaluate Retriever on its own
if eval_retriever_only:
retriever_eval_results = retriever.eval()
## Retriever Recall is the proportion of questions for which the correct document containing the answer is
## among the correct documents
print("Retriever Recall:", retriever_eval_results["recall"])
## Retriever Mean Avg Precision rewards retrievers that give relevant documents a higher rank
print("Retriever Mean Avg Precision:", retriever_eval_results["map"])
# Evaluate Reader on its own
if eval_reader_only:
reader_eval_results = reader.eval(document_store=document_store, device=device)
# Evaluation of Reader can also be done directly on a SQuAD-formatted file without passing the data to Elasticsearch
#reader_eval_results = reader.eval_on_file("../data/natural_questions", "dev_subset.json", device=device)
## Reader Top-N-Recall is the proportion of predicted answers that overlap with their corresponding correct answer
print("Reader Top-N-Recall:", reader_eval_results["top_n_recall"])
## Reader Exact Match is the proportion of questions where the predicted answer is exactly the same as the correct answer
print("Reader Exact Match:", reader_eval_results["EM"])
## Reader F1-Score is the average overlap between the predicted answers and the correct answers
print("Reader F1-Score:", reader_eval_results["f1"])
# Evaluate combination of Reader and Retriever through Finder
if eval_both:
finder_eval_results = finder.eval(top_k_retriever = 10, top_k_reader = 10)
finder.print_eval_results(finder_eval_results)