mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-18 22:42:24 +00:00

* Add SplitDocumentList and JoinAnswer nodes * Update Documentation & Code Style * Add tests + adapt tutorial * Update Documentation & Code Style * Remove branch from installation path in Tutorial * Update Documentation & Code Style * Fix typing * Update Documentation & Code Style * Change name of SplitDocumentList to RouteDocuments * Update Documentation & Code Style * Adapt tutorials to new name * Add test for JoinAnswers * Update Documentation & Code Style * Adapt name of test for JoinAnswers node Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
1098 lines
43 KiB
Python
1098 lines
43 KiB
Python
from pathlib import Path
|
|
|
|
import os
|
|
import json
|
|
from unittest.mock import Mock
|
|
|
|
import pandas as pd
|
|
import pytest
|
|
import responses
|
|
|
|
from haystack import __version__, Document, Answer, JoinAnswers
|
|
from haystack.document_stores.base import BaseDocumentStore
|
|
from haystack.document_stores.deepsetcloud import DeepsetCloudDocumentStore
|
|
from haystack.document_stores.elasticsearch import ElasticsearchDocumentStore
|
|
from haystack.document_stores.memory import InMemoryDocumentStore
|
|
from haystack.nodes.other.join_docs import JoinDocuments
|
|
from haystack.nodes.base import BaseComponent
|
|
from haystack.nodes.retriever.base import BaseRetriever
|
|
from haystack.nodes.retriever.sparse import ElasticsearchRetriever
|
|
from haystack.pipelines import Pipeline, DocumentSearchPipeline, RootNode, ExtractiveQAPipeline
|
|
from haystack.pipelines.base import _PipelineCodeGen
|
|
from haystack.nodes import DensePassageRetriever, EmbeddingRetriever, RouteDocuments
|
|
|
|
from conftest import MOCK_DC, DC_API_ENDPOINT, DC_API_KEY, DC_TEST_INDEX, SAMPLES_PATH, deepset_cloud_fixture
|
|
|
|
|
|
@pytest.mark.elasticsearch
|
|
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
|
|
def test_load_and_save_yaml(document_store, tmp_path):
|
|
# test correct load of indexing pipeline from yaml
|
|
pipeline = Pipeline.load_from_yaml(
|
|
SAMPLES_PATH / "pipeline" / "test_pipeline.yaml", pipeline_name="indexing_pipeline"
|
|
)
|
|
pipeline.run(file_paths=SAMPLES_PATH / "pdf" / "sample_pdf_1.pdf")
|
|
# test correct load of query pipeline from yaml
|
|
pipeline = Pipeline.load_from_yaml(SAMPLES_PATH / "pipeline" / "test_pipeline.yaml", pipeline_name="query_pipeline")
|
|
prediction = pipeline.run(
|
|
query="Who made the PDF specification?", params={"ESRetriever": {"top_k": 10}, "Reader": {"top_k": 3}}
|
|
)
|
|
assert prediction["query"] == "Who made the PDF specification?"
|
|
assert prediction["answers"][0].answer == "Adobe Systems"
|
|
assert "_debug" not in prediction.keys()
|
|
|
|
# test invalid pipeline name
|
|
with pytest.raises(Exception):
|
|
Pipeline.load_from_yaml(path=SAMPLES_PATH / "pipeline" / "test_pipeline.yaml", pipeline_name="invalid")
|
|
# test config export
|
|
pipeline.save_to_yaml(tmp_path / "test.yaml")
|
|
with open(tmp_path / "test.yaml", "r", encoding="utf-8") as stream:
|
|
saved_yaml = stream.read()
|
|
expected_yaml = f"""
|
|
components:
|
|
- name: ESRetriever
|
|
params:
|
|
document_store: ElasticsearchDocumentStore
|
|
type: ElasticsearchRetriever
|
|
- name: ElasticsearchDocumentStore
|
|
params:
|
|
index: haystack_test
|
|
label_index: haystack_test_label
|
|
type: ElasticsearchDocumentStore
|
|
- name: Reader
|
|
params:
|
|
model_name_or_path: deepset/roberta-base-squad2
|
|
no_ans_boost: -10
|
|
num_processes: 0
|
|
type: FARMReader
|
|
pipelines:
|
|
- name: query
|
|
nodes:
|
|
- inputs:
|
|
- Query
|
|
name: ESRetriever
|
|
- inputs:
|
|
- ESRetriever
|
|
name: Reader
|
|
type: Pipeline
|
|
version: {__version__}
|
|
"""
|
|
assert saved_yaml.replace(" ", "").replace("\n", "") == expected_yaml.replace(" ", "").replace("\n", "")
|
|
|
|
|
|
@pytest.mark.elasticsearch
|
|
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
|
|
def test_load_and_save_yaml_prebuilt_pipelines(document_store, tmp_path):
|
|
# populating index
|
|
pipeline = Pipeline.load_from_yaml(
|
|
SAMPLES_PATH / "pipeline" / "test_pipeline.yaml", pipeline_name="indexing_pipeline"
|
|
)
|
|
pipeline.run(file_paths=SAMPLES_PATH / "pdf" / "sample_pdf_1.pdf")
|
|
# test correct load of query pipeline from yaml
|
|
pipeline = ExtractiveQAPipeline.load_from_yaml(
|
|
SAMPLES_PATH / "pipeline" / "test_pipeline.yaml", pipeline_name="query_pipeline"
|
|
)
|
|
prediction = pipeline.run(
|
|
query="Who made the PDF specification?", params={"ESRetriever": {"top_k": 10}, "Reader": {"top_k": 3}}
|
|
)
|
|
assert prediction["query"] == "Who made the PDF specification?"
|
|
assert prediction["answers"][0].answer == "Adobe Systems"
|
|
assert "_debug" not in prediction.keys()
|
|
|
|
# test invalid pipeline name
|
|
with pytest.raises(Exception):
|
|
ExtractiveQAPipeline.load_from_yaml(
|
|
path=SAMPLES_PATH / "pipeline" / "test_pipeline.yaml", pipeline_name="invalid"
|
|
)
|
|
# test config export
|
|
pipeline.save_to_yaml(tmp_path / "test.yaml")
|
|
with open(tmp_path / "test.yaml", "r", encoding="utf-8") as stream:
|
|
saved_yaml = stream.read()
|
|
expected_yaml = f"""
|
|
components:
|
|
- name: ESRetriever
|
|
params:
|
|
document_store: ElasticsearchDocumentStore
|
|
type: ElasticsearchRetriever
|
|
- name: ElasticsearchDocumentStore
|
|
params:
|
|
index: haystack_test
|
|
label_index: haystack_test_label
|
|
type: ElasticsearchDocumentStore
|
|
- name: Reader
|
|
params:
|
|
model_name_or_path: deepset/roberta-base-squad2
|
|
no_ans_boost: -10
|
|
num_processes: 0
|
|
type: FARMReader
|
|
pipelines:
|
|
- name: query
|
|
nodes:
|
|
- inputs:
|
|
- Query
|
|
name: ESRetriever
|
|
- inputs:
|
|
- ESRetriever
|
|
name: Reader
|
|
type: Pipeline
|
|
version: {__version__}
|
|
"""
|
|
assert saved_yaml.replace(" ", "").replace("\n", "") == expected_yaml.replace(" ", "").replace("\n", "")
|
|
|
|
|
|
def test_load_tfidfretriever_yaml(tmp_path):
|
|
documents = [
|
|
{
|
|
"content": "A Doc specifically talking about haystack. Haystack can be used to scale QA models to large document collections."
|
|
}
|
|
]
|
|
pipeline = Pipeline.load_from_yaml(
|
|
SAMPLES_PATH / "pipeline" / "test_pipeline_tfidfretriever.yaml", pipeline_name="query_pipeline"
|
|
)
|
|
with pytest.raises(Exception) as exc_info:
|
|
pipeline.run(
|
|
query="What can be used to scale QA models to large document collections?",
|
|
params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 3}},
|
|
)
|
|
exception_raised = str(exc_info.value)
|
|
assert "Retrieval requires dataframe df and tf-idf matrix" in exception_raised
|
|
|
|
pipeline.get_node(name="Retriever").document_store.write_documents(documents=documents)
|
|
prediction = pipeline.run(
|
|
query="What can be used to scale QA models to large document collections?",
|
|
params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 3}},
|
|
)
|
|
assert prediction["query"] == "What can be used to scale QA models to large document collections?"
|
|
assert prediction["answers"][0].answer == "haystack"
|
|
|
|
|
|
@pytest.mark.elasticsearch
|
|
def test_to_code():
|
|
index_pipeline = Pipeline.load_from_yaml(
|
|
SAMPLES_PATH / "pipeline" / "test_pipeline.yaml", pipeline_name="indexing_pipeline"
|
|
)
|
|
query_pipeline = Pipeline.load_from_yaml(
|
|
SAMPLES_PATH / "pipeline" / "test_pipeline.yaml", pipeline_name="query_pipeline"
|
|
)
|
|
query_pipeline_code = query_pipeline.to_code(pipeline_variable_name="query_pipeline_from_code")
|
|
index_pipeline_code = index_pipeline.to_code(pipeline_variable_name="index_pipeline_from_code")
|
|
exec(query_pipeline_code)
|
|
exec(index_pipeline_code)
|
|
assert locals()["query_pipeline_from_code"] is not None
|
|
assert locals()["index_pipeline_from_code"] is not None
|
|
assert query_pipeline.get_config() == locals()["query_pipeline_from_code"].get_config()
|
|
assert index_pipeline.get_config() == locals()["index_pipeline_from_code"].get_config()
|
|
|
|
|
|
@pytest.mark.elasticsearch
|
|
def test_PipelineCodeGen_simple_sparse_pipeline():
|
|
doc_store = ElasticsearchDocumentStore(index="my-index")
|
|
retriever = ElasticsearchRetriever(document_store=doc_store, top_k=20)
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(component=retriever, name="retri", inputs=["Query"])
|
|
|
|
code = _PipelineCodeGen.generate_code(pipeline=pipeline, pipeline_variable_name="p", generate_imports=False)
|
|
assert code == (
|
|
'elasticsearch_document_store = ElasticsearchDocumentStore(index="my-index")\n'
|
|
"retri = ElasticsearchRetriever(document_store=elasticsearch_document_store, top_k=20)\n"
|
|
"\n"
|
|
"p = Pipeline()\n"
|
|
'p.add_node(component=retri, name="retri", inputs=["Query"])'
|
|
)
|
|
|
|
|
|
@pytest.mark.elasticsearch
|
|
def test_PipelineCodeGen_dual_retriever_pipeline():
|
|
es_doc_store = ElasticsearchDocumentStore(index="my-index")
|
|
es_retriever = ElasticsearchRetriever(document_store=es_doc_store, top_k=20)
|
|
dense_doc_store = InMemoryDocumentStore(index="my-index")
|
|
emb_retriever = EmbeddingRetriever(
|
|
document_store=dense_doc_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2"
|
|
)
|
|
p_ensemble = Pipeline()
|
|
p_ensemble.add_node(component=es_retriever, name="EsRetriever", inputs=["Query"])
|
|
p_ensemble.add_node(component=emb_retriever, name="EmbeddingRetriever", inputs=["Query"])
|
|
p_ensemble.add_node(
|
|
component=JoinDocuments(join_mode="merge"), name="JoinResults", inputs=["EsRetriever", "EmbeddingRetriever"]
|
|
)
|
|
|
|
code = _PipelineCodeGen.generate_code(pipeline=p_ensemble, pipeline_variable_name="p", generate_imports=False)
|
|
assert code == (
|
|
'elasticsearch_document_store = ElasticsearchDocumentStore(index="my-index")\n'
|
|
"es_retriever = ElasticsearchRetriever(document_store=elasticsearch_document_store, top_k=20)\n"
|
|
'in_memory_document_store = InMemoryDocumentStore(index="my-index")\n'
|
|
'embedding_retriever = EmbeddingRetriever(document_store=in_memory_document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2")\n'
|
|
'join_results = JoinDocuments(join_mode="merge")\n'
|
|
"\n"
|
|
"p = Pipeline()\n"
|
|
'p.add_node(component=es_retriever, name="EsRetriever", inputs=["Query"])\n'
|
|
'p.add_node(component=embedding_retriever, name="EmbeddingRetriever", inputs=["Query"])\n'
|
|
'p.add_node(component=join_results, name="JoinResults", inputs=["EsRetriever", "EmbeddingRetriever"])'
|
|
)
|
|
|
|
|
|
@pytest.mark.elasticsearch
|
|
def test_PipelineCodeGen_dual_retriever_pipeline_same_docstore():
|
|
es_doc_store = ElasticsearchDocumentStore(index="my-index")
|
|
es_retriever = ElasticsearchRetriever(document_store=es_doc_store, top_k=20)
|
|
emb_retriever = EmbeddingRetriever(
|
|
document_store=es_doc_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2"
|
|
)
|
|
p_ensemble = Pipeline()
|
|
p_ensemble.add_node(component=es_retriever, name="EsRetriever", inputs=["Query"])
|
|
p_ensemble.add_node(component=emb_retriever, name="EmbeddingRetriever", inputs=["Query"])
|
|
p_ensemble.add_node(
|
|
component=JoinDocuments(join_mode="merge"), name="JoinResults", inputs=["EsRetriever", "EmbeddingRetriever"]
|
|
)
|
|
|
|
code = _PipelineCodeGen.generate_code(pipeline=p_ensemble, pipeline_variable_name="p", generate_imports=False)
|
|
assert code == (
|
|
'elasticsearch_document_store = ElasticsearchDocumentStore(index="my-index")\n'
|
|
"es_retriever = ElasticsearchRetriever(document_store=elasticsearch_document_store, top_k=20)\n"
|
|
'embedding_retriever = EmbeddingRetriever(document_store=elasticsearch_document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2")\n'
|
|
'join_results = JoinDocuments(join_mode="merge")\n'
|
|
"\n"
|
|
"p = Pipeline()\n"
|
|
'p.add_node(component=es_retriever, name="EsRetriever", inputs=["Query"])\n'
|
|
'p.add_node(component=embedding_retriever, name="EmbeddingRetriever", inputs=["Query"])\n'
|
|
'p.add_node(component=join_results, name="JoinResults", inputs=["EsRetriever", "EmbeddingRetriever"])'
|
|
)
|
|
|
|
|
|
@pytest.mark.elasticsearch
|
|
def test_PipelineCodeGen_dual_retriever_pipeline_different_docstore():
|
|
es_doc_store_a = ElasticsearchDocumentStore(index="my-index-a")
|
|
es_doc_store_b = ElasticsearchDocumentStore(index="my-index-b")
|
|
es_retriever = ElasticsearchRetriever(document_store=es_doc_store_a, top_k=20)
|
|
emb_retriever = EmbeddingRetriever(
|
|
document_store=es_doc_store_b, embedding_model="sentence-transformers/all-MiniLM-L6-v2"
|
|
)
|
|
p_ensemble = Pipeline()
|
|
p_ensemble.add_node(component=es_retriever, name="EsRetriever", inputs=["Query"])
|
|
p_ensemble.add_node(component=emb_retriever, name="EmbeddingRetriever", inputs=["Query"])
|
|
p_ensemble.add_node(
|
|
component=JoinDocuments(join_mode="merge"), name="JoinResults", inputs=["EsRetriever", "EmbeddingRetriever"]
|
|
)
|
|
|
|
code = _PipelineCodeGen.generate_code(pipeline=p_ensemble, pipeline_variable_name="p", generate_imports=False)
|
|
assert code == (
|
|
'elasticsearch_document_store = ElasticsearchDocumentStore(index="my-index-a")\n'
|
|
"es_retriever = ElasticsearchRetriever(document_store=elasticsearch_document_store, top_k=20)\n"
|
|
'elasticsearch_document_store_2 = ElasticsearchDocumentStore(index="my-index-b")\n'
|
|
'embedding_retriever = EmbeddingRetriever(document_store=elasticsearch_document_store_2, embedding_model="sentence-transformers/all-MiniLM-L6-v2")\n'
|
|
'join_results = JoinDocuments(join_mode="merge")\n'
|
|
"\n"
|
|
"p = Pipeline()\n"
|
|
'p.add_node(component=es_retriever, name="EsRetriever", inputs=["Query"])\n'
|
|
'p.add_node(component=embedding_retriever, name="EmbeddingRetriever", inputs=["Query"])\n'
|
|
'p.add_node(component=join_results, name="JoinResults", inputs=["EsRetriever", "EmbeddingRetriever"])'
|
|
)
|
|
|
|
|
|
@pytest.mark.elasticsearch
|
|
def test_PipelineCodeGen_dual_retriever_pipeline_same_type():
|
|
es_doc_store = ElasticsearchDocumentStore(index="my-index")
|
|
es_retriever_1 = ElasticsearchRetriever(document_store=es_doc_store, top_k=20)
|
|
es_retriever_2 = ElasticsearchRetriever(document_store=es_doc_store, top_k=10)
|
|
p_ensemble = Pipeline()
|
|
p_ensemble.add_node(component=es_retriever_1, name="EsRetriever1", inputs=["Query"])
|
|
p_ensemble.add_node(component=es_retriever_2, name="EsRetriever2", inputs=["Query"])
|
|
p_ensemble.add_node(
|
|
component=JoinDocuments(join_mode="merge"), name="JoinResults", inputs=["EsRetriever1", "EsRetriever2"]
|
|
)
|
|
|
|
code = _PipelineCodeGen.generate_code(pipeline=p_ensemble, pipeline_variable_name="p", generate_imports=False)
|
|
assert code == (
|
|
'elasticsearch_document_store = ElasticsearchDocumentStore(index="my-index")\n'
|
|
"es_retriever_1 = ElasticsearchRetriever(document_store=elasticsearch_document_store, top_k=20)\n"
|
|
"es_retriever_2 = ElasticsearchRetriever(document_store=elasticsearch_document_store)\n"
|
|
'join_results = JoinDocuments(join_mode="merge")\n'
|
|
"\n"
|
|
"p = Pipeline()\n"
|
|
'p.add_node(component=es_retriever_1, name="EsRetriever1", inputs=["Query"])\n'
|
|
'p.add_node(component=es_retriever_2, name="EsRetriever2", inputs=["Query"])\n'
|
|
'p.add_node(component=join_results, name="JoinResults", inputs=["EsRetriever1", "EsRetriever2"])'
|
|
)
|
|
|
|
|
|
@pytest.mark.elasticsearch
|
|
def test_PipelineCodeGen_imports():
|
|
doc_store = ElasticsearchDocumentStore(index="my-index")
|
|
retriever = ElasticsearchRetriever(document_store=doc_store, top_k=20)
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(component=retriever, name="retri", inputs=["Query"])
|
|
|
|
code = _PipelineCodeGen.generate_code(pipeline=pipeline, pipeline_variable_name="p", generate_imports=True)
|
|
assert code == (
|
|
"from haystack.document_stores import ElasticsearchDocumentStore\n"
|
|
"from haystack.nodes import ElasticsearchRetriever\n"
|
|
"\n"
|
|
'elasticsearch_document_store = ElasticsearchDocumentStore(index="my-index")\n'
|
|
"retri = ElasticsearchRetriever(document_store=elasticsearch_document_store, top_k=20)\n"
|
|
"\n"
|
|
"p = Pipeline()\n"
|
|
'p.add_node(component=retri, name="retri", inputs=["Query"])'
|
|
)
|
|
|
|
|
|
def test_PipelineCodeGen_order_components():
|
|
dependency_map = {"a": ["aa", "ab"], "aa": [], "ab": ["aba"], "aba": [], "b": ["a", "c"], "c": ["a"]}
|
|
ordered = _PipelineCodeGen._order_components(dependency_map=dependency_map)
|
|
assert ordered == ["aa", "aba", "ab", "a", "c", "b"]
|
|
|
|
|
|
@pytest.mark.parametrize("input", ["\btest", " test", "#test", "+test", "\ttest", "\ntest", "test()"])
|
|
def test_PipelineCodeGen_validate_user_input_invalid(input):
|
|
with pytest.raises(ValueError):
|
|
_PipelineCodeGen._validate_user_input(input)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"input", ["test", "testName", "test_name", "test-name", "test-name1234", "http://localhost:8000/my-path"]
|
|
)
|
|
def test_PipelineCodeGen_validate_user_input_valid(input):
|
|
_PipelineCodeGen._validate_user_input(input)
|
|
|
|
|
|
def test_PipelineCodeGen_validate_pipeline_config_invalid_component_name():
|
|
with pytest.raises(ValueError):
|
|
_PipelineCodeGen._validate_config({"components": [{"name": "\btest"}]})
|
|
|
|
|
|
def test_PipelineCodeGen_validate_pipeline_config_invalid_component_type():
|
|
with pytest.raises(ValueError):
|
|
_PipelineCodeGen._validate_config({"components": [{"name": "test", "type": "\btest"}]})
|
|
|
|
|
|
def test_PipelineCodeGen_validate_pipeline_config_invalid_component_param():
|
|
with pytest.raises(ValueError):
|
|
_PipelineCodeGen._validate_config(
|
|
{"components": [{"name": "test", "type": "test", "params": {"key": "\btest"}}]}
|
|
)
|
|
|
|
|
|
def test_PipelineCodeGen_validate_pipeline_config_invalid_component_param_key():
|
|
with pytest.raises(ValueError):
|
|
_PipelineCodeGen._validate_config(
|
|
{"components": [{"name": "test", "type": "test", "params": {"\btest": "test"}}]}
|
|
)
|
|
|
|
|
|
def test_PipelineCodeGen_validate_pipeline_config_invalid_pipeline_name():
|
|
with pytest.raises(ValueError):
|
|
_PipelineCodeGen._validate_config(
|
|
{
|
|
"components": [
|
|
{
|
|
"name": "test",
|
|
"type": "test",
|
|
}
|
|
],
|
|
"pipelines": [{"name": "\btest"}],
|
|
}
|
|
)
|
|
|
|
|
|
def test_PipelineCodeGen_validate_pipeline_config_invalid_pipeline_type():
|
|
with pytest.raises(ValueError):
|
|
_PipelineCodeGen._validate_config(
|
|
{
|
|
"components": [
|
|
{
|
|
"name": "test",
|
|
"type": "test",
|
|
}
|
|
],
|
|
"pipelines": [{"name": "test", "type": "\btest"}],
|
|
}
|
|
)
|
|
|
|
|
|
def test_PipelineCodeGen_validate_pipeline_config_invalid_pipeline_node_name():
|
|
with pytest.raises(ValueError):
|
|
_PipelineCodeGen._validate_config(
|
|
{
|
|
"components": [
|
|
{
|
|
"name": "test",
|
|
"type": "test",
|
|
}
|
|
],
|
|
"pipelines": [{"name": "test", "type": "test", "nodes": [{"name": "\btest"}]}],
|
|
}
|
|
)
|
|
|
|
|
|
def test_PipelineCodeGen_validate_pipeline_config_invalid_pipeline_node_inputs():
|
|
with pytest.raises(ValueError):
|
|
_PipelineCodeGen._validate_config(
|
|
{
|
|
"components": [
|
|
{
|
|
"name": "test",
|
|
"type": "test",
|
|
}
|
|
],
|
|
"pipelines": [{"name": "test", "type": "test", "nodes": [{"name": "test", "inputs": ["\btest"]}]}],
|
|
}
|
|
)
|
|
|
|
|
|
@pytest.mark.usefixtures(deepset_cloud_fixture.__name__)
|
|
@responses.activate
|
|
def test_load_from_deepset_cloud_query():
|
|
if MOCK_DC:
|
|
with open(SAMPLES_PATH / "dc" / "pipeline_config.json", "r") as f:
|
|
pipeline_config_yaml_response = json.load(f)
|
|
|
|
responses.add(
|
|
method=responses.GET,
|
|
url=f"{DC_API_ENDPOINT}/workspaces/default/pipelines/{DC_TEST_INDEX}/json",
|
|
json=pipeline_config_yaml_response,
|
|
status=200,
|
|
)
|
|
|
|
responses.add(
|
|
method=responses.POST,
|
|
url=f"{DC_API_ENDPOINT}/workspaces/default/indexes/{DC_TEST_INDEX}/documents-query",
|
|
json=[{"id": "test_doc", "content": "man on hores"}],
|
|
status=200,
|
|
)
|
|
|
|
query_pipeline = Pipeline.load_from_deepset_cloud(
|
|
pipeline_config_name=DC_TEST_INDEX, api_endpoint=DC_API_ENDPOINT, api_key=DC_API_KEY
|
|
)
|
|
retriever = query_pipeline.get_node("Retriever")
|
|
document_store = retriever.document_store
|
|
assert isinstance(retriever, ElasticsearchRetriever)
|
|
assert isinstance(document_store, DeepsetCloudDocumentStore)
|
|
assert document_store == query_pipeline.get_document_store()
|
|
|
|
prediction = query_pipeline.run(query="man on horse", params={})
|
|
|
|
assert prediction["query"] == "man on horse"
|
|
assert len(prediction["documents"]) == 1
|
|
assert prediction["documents"][0].id == "test_doc"
|
|
|
|
|
|
@pytest.mark.usefixtures(deepset_cloud_fixture.__name__)
|
|
@responses.activate
|
|
def test_load_from_deepset_cloud_indexing():
|
|
if MOCK_DC:
|
|
with open(SAMPLES_PATH / "dc" / "pipeline_config.json", "r") as f:
|
|
pipeline_config_yaml_response = json.load(f)
|
|
|
|
responses.add(
|
|
method=responses.GET,
|
|
url=f"{DC_API_ENDPOINT}/workspaces/default/pipelines/{DC_TEST_INDEX}/json",
|
|
json=pipeline_config_yaml_response,
|
|
status=200,
|
|
)
|
|
|
|
indexing_pipeline = Pipeline.load_from_deepset_cloud(
|
|
pipeline_config_name=DC_TEST_INDEX, api_endpoint=DC_API_ENDPOINT, api_key=DC_API_KEY, pipeline_name="indexing"
|
|
)
|
|
document_store = indexing_pipeline.get_node("DocumentStore")
|
|
assert isinstance(document_store, DeepsetCloudDocumentStore)
|
|
|
|
with pytest.raises(
|
|
Exception, match=".*NotImplementedError.*DeepsetCloudDocumentStore currently does not support writing documents"
|
|
):
|
|
indexing_pipeline.run(file_paths=[SAMPLES_PATH / "docs" / "doc_1.txt"])
|
|
|
|
|
|
@pytest.mark.usefixtures(deepset_cloud_fixture.__name__)
|
|
@responses.activate
|
|
def test_list_pipelines_on_deepset_cloud():
|
|
if MOCK_DC:
|
|
responses.add(
|
|
method=responses.GET,
|
|
url=f"{DC_API_ENDPOINT}/workspaces/default/pipelines",
|
|
json={
|
|
"data": [
|
|
{
|
|
"name": "test_pipeline_config",
|
|
"pipeline_id": "2184e0c1-c6ec-40a1-9b28-5d2768e5efa2",
|
|
"status": "DEPLOYED",
|
|
"created_at": "2022-02-01T09:57:03.803991+00:00",
|
|
"deleted": False,
|
|
"is_default": False,
|
|
"indexing": {"status": "IN_PROGRESS", "pending_file_count": 4, "total_file_count": 33},
|
|
}
|
|
],
|
|
"has_more": False,
|
|
"total": 1,
|
|
},
|
|
status=200,
|
|
)
|
|
|
|
pipelines = Pipeline.list_pipelines_on_deepset_cloud(api_endpoint=DC_API_ENDPOINT, api_key=DC_API_KEY)
|
|
assert len(pipelines) == 1
|
|
assert pipelines[0]["name"] == "test_pipeline_config"
|
|
|
|
|
|
@pytest.mark.usefixtures(deepset_cloud_fixture.__name__)
|
|
@responses.activate
|
|
def test_save_to_deepset_cloud():
|
|
if MOCK_DC:
|
|
responses.add(
|
|
method=responses.GET,
|
|
url=f"{DC_API_ENDPOINT}/workspaces/default/pipelines/test_pipeline_config",
|
|
json={
|
|
"name": "test_pipeline_config",
|
|
"pipeline_id": "2184e9c1-c6ec-40a1-9b28-5d2768e5efa2",
|
|
"status": "UNDEPLOYED",
|
|
"created_at": "2022-02-01T09:57:03.803991+00:00",
|
|
"deleted": False,
|
|
"is_default": False,
|
|
"indexing": {"status": "IN_PROGRESS", "pending_file_count": 4, "total_file_count": 33},
|
|
},
|
|
status=200,
|
|
)
|
|
|
|
responses.add(
|
|
method=responses.GET,
|
|
url=f"{DC_API_ENDPOINT}/workspaces/default/pipelines/test_pipeline_config_deployed",
|
|
json={
|
|
"name": "test_pipeline_config_deployed",
|
|
"pipeline_id": "8184e0c1-c6ec-40a1-9b28-5d2768e5efa3",
|
|
"status": "DEPLOYED",
|
|
"created_at": "2022-02-09T09:57:03.803991+00:00",
|
|
"deleted": False,
|
|
"is_default": False,
|
|
"indexing": {"status": "INDEXED", "pending_file_count": 0, "total_file_count": 33},
|
|
},
|
|
status=200,
|
|
)
|
|
|
|
responses.add(
|
|
method=responses.GET,
|
|
url=f"{DC_API_ENDPOINT}/workspaces/default/pipelines/test_pipeline_config_copy",
|
|
json={"errors": ["Pipeline with the name test_pipeline_config_copy does not exists."]},
|
|
status=404,
|
|
)
|
|
|
|
with open(SAMPLES_PATH / "dc" / "pipeline_config.json", "r") as f:
|
|
pipeline_config_yaml_response = json.load(f)
|
|
|
|
responses.add(
|
|
method=responses.GET,
|
|
url=f"{DC_API_ENDPOINT}/workspaces/default/pipelines/{DC_TEST_INDEX}/json",
|
|
json=pipeline_config_yaml_response,
|
|
status=200,
|
|
)
|
|
|
|
responses.add(
|
|
method=responses.POST,
|
|
url=f"{DC_API_ENDPOINT}/workspaces/default/pipelines",
|
|
json={"name": "test_pipeline_config_copy"},
|
|
status=200,
|
|
)
|
|
|
|
responses.add(
|
|
method=responses.PUT,
|
|
url=f"{DC_API_ENDPOINT}/workspaces/default/pipelines/test_pipeline_config/yaml",
|
|
json={"name": "test_pipeline_config"},
|
|
status=200,
|
|
)
|
|
|
|
responses.add(
|
|
method=responses.PUT,
|
|
url=f"{DC_API_ENDPOINT}/workspaces/default/pipelines/test_pipeline_config_deployed/yaml",
|
|
json={"errors": ["Updating the pipeline yaml is not allowed for pipelines with status: 'DEPLOYED'"]},
|
|
status=406,
|
|
)
|
|
|
|
query_pipeline = Pipeline.load_from_deepset_cloud(
|
|
pipeline_config_name=DC_TEST_INDEX, api_endpoint=DC_API_ENDPOINT, api_key=DC_API_KEY
|
|
)
|
|
|
|
index_pipeline = Pipeline.load_from_deepset_cloud(
|
|
pipeline_config_name=DC_TEST_INDEX, api_endpoint=DC_API_ENDPOINT, api_key=DC_API_KEY, pipeline_name="indexing"
|
|
)
|
|
|
|
Pipeline.save_to_deepset_cloud(
|
|
query_pipeline=query_pipeline,
|
|
index_pipeline=index_pipeline,
|
|
pipeline_config_name="test_pipeline_config_copy",
|
|
api_endpoint=DC_API_ENDPOINT,
|
|
api_key=DC_API_KEY,
|
|
)
|
|
|
|
with pytest.raises(
|
|
ValueError,
|
|
match="Pipeline config 'test_pipeline_config' already exists. Set `overwrite=True` to overwrite pipeline config",
|
|
):
|
|
Pipeline.save_to_deepset_cloud(
|
|
query_pipeline=query_pipeline,
|
|
index_pipeline=index_pipeline,
|
|
pipeline_config_name="test_pipeline_config",
|
|
api_endpoint=DC_API_ENDPOINT,
|
|
api_key=DC_API_KEY,
|
|
)
|
|
|
|
Pipeline.save_to_deepset_cloud(
|
|
query_pipeline=query_pipeline,
|
|
index_pipeline=index_pipeline,
|
|
pipeline_config_name="test_pipeline_config",
|
|
api_endpoint=DC_API_ENDPOINT,
|
|
api_key=DC_API_KEY,
|
|
overwrite=True,
|
|
)
|
|
|
|
with pytest.raises(
|
|
ValueError,
|
|
match="Deployed pipeline configs are not allowed to be updated. Please undeploy pipeline config 'test_pipeline_config_deployed' first",
|
|
):
|
|
Pipeline.save_to_deepset_cloud(
|
|
query_pipeline=query_pipeline,
|
|
index_pipeline=index_pipeline,
|
|
pipeline_config_name="test_pipeline_config_deployed",
|
|
api_endpoint=DC_API_ENDPOINT,
|
|
api_key=DC_API_KEY,
|
|
overwrite=True,
|
|
)
|
|
|
|
|
|
# @pytest.mark.slow
|
|
# @pytest.mark.elasticsearch
|
|
# @pytest.mark.parametrize(
|
|
# "retriever_with_docs, document_store_with_docs",
|
|
# [("elasticsearch", "elasticsearch")],
|
|
# indirect=True,
|
|
# )
|
|
@pytest.mark.parametrize(
|
|
"retriever_with_docs,document_store_with_docs",
|
|
[
|
|
("dpr", "elasticsearch"),
|
|
("dpr", "faiss"),
|
|
("dpr", "memory"),
|
|
("dpr", "milvus1"),
|
|
("embedding", "elasticsearch"),
|
|
("embedding", "faiss"),
|
|
("embedding", "memory"),
|
|
("embedding", "milvus1"),
|
|
("elasticsearch", "elasticsearch"),
|
|
("es_filter_only", "elasticsearch"),
|
|
("tfidf", "memory"),
|
|
],
|
|
indirect=True,
|
|
)
|
|
def test_graph_creation(retriever_with_docs, document_store_with_docs):
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="ES", component=retriever_with_docs, inputs=["Query"])
|
|
|
|
with pytest.raises(AssertionError):
|
|
pipeline.add_node(name="Reader", component=retriever_with_docs, inputs=["ES.output_2"])
|
|
|
|
with pytest.raises(AssertionError):
|
|
pipeline.add_node(name="Reader", component=retriever_with_docs, inputs=["ES.wrong_edge_label"])
|
|
|
|
with pytest.raises(Exception):
|
|
pipeline.add_node(name="Reader", component=retriever_with_docs, inputs=["InvalidNode"])
|
|
|
|
with pytest.raises(Exception):
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="ES", component=retriever_with_docs, inputs=["InvalidNode"])
|
|
|
|
|
|
def test_parallel_paths_in_pipeline_graph():
|
|
class A(RootNode):
|
|
def run(self):
|
|
test = "A"
|
|
return {"test": test}, "output_1"
|
|
|
|
class B(RootNode):
|
|
def run(self, test):
|
|
test += "B"
|
|
return {"test": test}, "output_1"
|
|
|
|
class C(RootNode):
|
|
def run(self, test):
|
|
test += "C"
|
|
return {"test": test}, "output_1"
|
|
|
|
class D(RootNode):
|
|
def run(self, test):
|
|
test += "D"
|
|
return {"test": test}, "output_1"
|
|
|
|
class E(RootNode):
|
|
def run(self, test):
|
|
test += "E"
|
|
return {"test": test}, "output_1"
|
|
|
|
class JoinNode(RootNode):
|
|
def run(self, inputs):
|
|
test = inputs[0]["test"] + inputs[1]["test"]
|
|
return {"test": test}, "output_1"
|
|
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=A(), inputs=["Query"])
|
|
pipeline.add_node(name="B", component=B(), inputs=["A"])
|
|
pipeline.add_node(name="C", component=C(), inputs=["B"])
|
|
pipeline.add_node(name="E", component=E(), inputs=["C"])
|
|
pipeline.add_node(name="D", component=D(), inputs=["B"])
|
|
pipeline.add_node(name="F", component=JoinNode(), inputs=["D", "E"])
|
|
output = pipeline.run(query="test")
|
|
assert output["test"] == "ABDABCE"
|
|
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=A(), inputs=["Query"])
|
|
pipeline.add_node(name="B", component=B(), inputs=["A"])
|
|
pipeline.add_node(name="C", component=C(), inputs=["B"])
|
|
pipeline.add_node(name="D", component=D(), inputs=["B"])
|
|
pipeline.add_node(name="E", component=JoinNode(), inputs=["C", "D"])
|
|
output = pipeline.run(query="test")
|
|
assert output["test"] == "ABCABD"
|
|
|
|
|
|
def test_parallel_paths_in_pipeline_graph_with_branching():
|
|
class AWithOutput1(RootNode):
|
|
outgoing_edges = 2
|
|
|
|
def run(self):
|
|
output = "A"
|
|
return {"output": output}, "output_1"
|
|
|
|
class AWithOutput2(RootNode):
|
|
outgoing_edges = 2
|
|
|
|
def run(self):
|
|
output = "A"
|
|
return {"output": output}, "output_2"
|
|
|
|
class AWithOutputAll(RootNode):
|
|
outgoing_edges = 2
|
|
|
|
def run(self):
|
|
output = "A"
|
|
return {"output": output}, "output_all"
|
|
|
|
class B(RootNode):
|
|
def run(self, output):
|
|
output += "B"
|
|
return {"output": output}, "output_1"
|
|
|
|
class C(RootNode):
|
|
def run(self, output):
|
|
output += "C"
|
|
return {"output": output}, "output_1"
|
|
|
|
class D(RootNode):
|
|
def run(self, output):
|
|
output += "D"
|
|
return {"output": output}, "output_1"
|
|
|
|
class E(RootNode):
|
|
def run(self, output):
|
|
output += "E"
|
|
return {"output": output}, "output_1"
|
|
|
|
class JoinNode(RootNode):
|
|
def run(self, output=None, inputs=None):
|
|
if inputs:
|
|
output = ""
|
|
for input_dict in inputs:
|
|
output += input_dict["output"]
|
|
return {"output": output}, "output_1"
|
|
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=AWithOutput1(), inputs=["Query"])
|
|
pipeline.add_node(name="B", component=B(), inputs=["A.output_1"])
|
|
pipeline.add_node(name="C", component=C(), inputs=["A.output_2"])
|
|
pipeline.add_node(name="D", component=E(), inputs=["B"])
|
|
pipeline.add_node(name="E", component=D(), inputs=["B"])
|
|
pipeline.add_node(name="F", component=JoinNode(), inputs=["D", "E", "C"])
|
|
output = pipeline.run(query="test")
|
|
assert output["output"] == "ABEABD"
|
|
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=AWithOutput2(), inputs=["Query"])
|
|
pipeline.add_node(name="B", component=B(), inputs=["A.output_1"])
|
|
pipeline.add_node(name="C", component=C(), inputs=["A.output_2"])
|
|
pipeline.add_node(name="D", component=E(), inputs=["B"])
|
|
pipeline.add_node(name="E", component=D(), inputs=["B"])
|
|
pipeline.add_node(name="F", component=JoinNode(), inputs=["D", "E", "C"])
|
|
output = pipeline.run(query="test")
|
|
assert output["output"] == "AC"
|
|
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=AWithOutputAll(), inputs=["Query"])
|
|
pipeline.add_node(name="B", component=B(), inputs=["A.output_1"])
|
|
pipeline.add_node(name="C", component=C(), inputs=["A.output_2"])
|
|
pipeline.add_node(name="D", component=E(), inputs=["B"])
|
|
pipeline.add_node(name="E", component=D(), inputs=["B"])
|
|
pipeline.add_node(name="F", component=JoinNode(), inputs=["D", "E", "C"])
|
|
output = pipeline.run(query="test")
|
|
assert output["output"] == "ACABEABD"
|
|
|
|
|
|
def test_pipeline_components():
|
|
class Node(BaseComponent):
|
|
outgoing_edges = 1
|
|
|
|
def run(self):
|
|
test = "test"
|
|
return {"test": test}, "output_1"
|
|
|
|
a = Node()
|
|
b = Node()
|
|
c = Node()
|
|
d = Node()
|
|
e = Node()
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=a, inputs=["Query"])
|
|
pipeline.add_node(name="B", component=b, inputs=["A"])
|
|
pipeline.add_node(name="C", component=c, inputs=["B"])
|
|
pipeline.add_node(name="D", component=d, inputs=["C"])
|
|
pipeline.add_node(name="E", component=e, inputs=["D"])
|
|
assert len(pipeline.components) == 5
|
|
assert pipeline.components["A"] == a
|
|
assert pipeline.components["B"] == b
|
|
assert pipeline.components["C"] == c
|
|
assert pipeline.components["D"] == d
|
|
assert pipeline.components["E"] == e
|
|
|
|
|
|
def test_pipeline_get_document_store_from_components():
|
|
class DummyDocumentStore(BaseDocumentStore):
|
|
pass
|
|
|
|
doc_store = DummyDocumentStore()
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=doc_store, inputs=["File"])
|
|
|
|
assert doc_store == pipeline.get_document_store()
|
|
|
|
|
|
def test_pipeline_get_document_store_from_components_multiple_doc_stores():
|
|
class DummyDocumentStore(BaseDocumentStore):
|
|
pass
|
|
|
|
doc_store_a = DummyDocumentStore()
|
|
doc_store_b = DummyDocumentStore()
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=doc_store_a, inputs=["File"])
|
|
pipeline.add_node(name="B", component=doc_store_b, inputs=["File"])
|
|
|
|
with pytest.raises(Exception, match="Multiple Document Stores found in Pipeline"):
|
|
pipeline.get_document_store()
|
|
|
|
|
|
def test_pipeline_get_document_store_from_retriever():
|
|
class DummyRetriever(BaseRetriever):
|
|
def __init__(self, document_store):
|
|
self.document_store = document_store
|
|
|
|
def run(self):
|
|
test = "test"
|
|
return {"test": test}, "output_1"
|
|
|
|
class DummyDocumentStore(BaseDocumentStore):
|
|
pass
|
|
|
|
doc_store = DummyDocumentStore()
|
|
retriever = DummyRetriever(document_store=doc_store)
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=retriever, inputs=["Query"])
|
|
|
|
assert doc_store == pipeline.get_document_store()
|
|
|
|
|
|
def test_pipeline_get_document_store_from_dual_retriever():
|
|
class DummyRetriever(BaseRetriever):
|
|
def __init__(self, document_store):
|
|
self.document_store = document_store
|
|
|
|
def run(self):
|
|
test = "test"
|
|
return {"test": test}, "output_1"
|
|
|
|
class DummyDocumentStore(BaseDocumentStore):
|
|
pass
|
|
|
|
class JoinNode(RootNode):
|
|
def run(self, output=None, inputs=None):
|
|
if inputs:
|
|
output = ""
|
|
for input_dict in inputs:
|
|
output += input_dict["output"]
|
|
return {"output": output}, "output_1"
|
|
|
|
doc_store = DummyDocumentStore()
|
|
retriever_a = DummyRetriever(document_store=doc_store)
|
|
retriever_b = DummyRetriever(document_store=doc_store)
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=retriever_a, inputs=["Query"])
|
|
pipeline.add_node(name="B", component=retriever_b, inputs=["Query"])
|
|
pipeline.add_node(name="C", component=JoinNode(), inputs=["A", "B"])
|
|
|
|
assert doc_store == pipeline.get_document_store()
|
|
|
|
|
|
def test_pipeline_get_document_store_multiple_doc_stores_from_dual_retriever():
|
|
class DummyRetriever(BaseRetriever):
|
|
def __init__(self, document_store):
|
|
self.document_store = document_store
|
|
|
|
def run(self):
|
|
test = "test"
|
|
return {"test": test}, "output_1"
|
|
|
|
class DummyDocumentStore(BaseDocumentStore):
|
|
pass
|
|
|
|
class JoinNode(RootNode):
|
|
def run(self, output=None, inputs=None):
|
|
if inputs:
|
|
output = ""
|
|
for input_dict in inputs:
|
|
output += input_dict["output"]
|
|
return {"output": output}, "output_1"
|
|
|
|
doc_store_a = DummyDocumentStore()
|
|
doc_store_b = DummyDocumentStore()
|
|
retriever_a = DummyRetriever(document_store=doc_store_a)
|
|
retriever_b = DummyRetriever(document_store=doc_store_b)
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=retriever_a, inputs=["Query"])
|
|
pipeline.add_node(name="B", component=retriever_b, inputs=["Query"])
|
|
pipeline.add_node(name="C", component=JoinNode(), inputs=["A", "B"])
|
|
|
|
with pytest.raises(Exception, match="Multiple Document Stores found in Pipeline"):
|
|
pipeline.get_document_store()
|
|
|
|
|
|
def test_existing_faiss_document_store():
|
|
clean_faiss_document_store()
|
|
|
|
pipeline = Pipeline.load_from_yaml(
|
|
SAMPLES_PATH / "pipeline" / "test_pipeline_faiss_indexing.yaml", pipeline_name="indexing_pipeline"
|
|
)
|
|
pipeline.run(file_paths=SAMPLES_PATH / "pdf" / "sample_pdf_1.pdf")
|
|
|
|
new_document_store = pipeline.get_document_store()
|
|
new_document_store.save("existing_faiss_document_store")
|
|
|
|
# test correct load of query pipeline from yaml
|
|
pipeline = Pipeline.load_from_yaml(
|
|
SAMPLES_PATH / "pipeline" / "test_pipeline_faiss_retrieval.yaml", pipeline_name="query_pipeline"
|
|
)
|
|
|
|
retriever = pipeline.get_node("DPRRetriever")
|
|
existing_document_store = retriever.document_store
|
|
faiss_index = existing_document_store.faiss_indexes["document"]
|
|
assert faiss_index.ntotal == 2
|
|
|
|
prediction = pipeline.run(query="Who made the PDF specification?", params={"DPRRetriever": {"top_k": 10}})
|
|
|
|
assert prediction["query"] == "Who made the PDF specification?"
|
|
assert len(prediction["documents"]) == 2
|
|
clean_faiss_document_store()
|
|
|
|
|
|
@pytest.mark.slow
|
|
@pytest.mark.parametrize("retriever_with_docs", ["elasticsearch", "dpr", "embedding"], indirect=True)
|
|
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
|
|
def test_documentsearch_es_authentication(retriever_with_docs, document_store_with_docs: ElasticsearchDocumentStore):
|
|
if isinstance(retriever_with_docs, (DensePassageRetriever, EmbeddingRetriever)):
|
|
document_store_with_docs.update_embeddings(retriever=retriever_with_docs)
|
|
mock_client = Mock(wraps=document_store_with_docs.client)
|
|
document_store_with_docs.client = mock_client
|
|
auth_headers = {"Authorization": "Basic YWRtaW46cm9vdA=="}
|
|
pipeline = DocumentSearchPipeline(retriever=retriever_with_docs)
|
|
prediction = pipeline.run(
|
|
query="Who lives in Berlin?",
|
|
params={"Retriever": {"top_k": 10, "headers": auth_headers}},
|
|
)
|
|
assert prediction is not None
|
|
assert len(prediction["documents"]) == 5
|
|
mock_client.search.assert_called_once()
|
|
args, kwargs = mock_client.search.call_args
|
|
assert "headers" in kwargs
|
|
assert kwargs["headers"] == auth_headers
|
|
|
|
|
|
@pytest.mark.slow
|
|
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
|
|
def test_documentsearch_document_store_authentication(retriever_with_docs, document_store_with_docs):
|
|
mock_client = None
|
|
if isinstance(document_store_with_docs, ElasticsearchDocumentStore):
|
|
es_document_store: ElasticsearchDocumentStore = document_store_with_docs
|
|
mock_client = Mock(wraps=es_document_store.client)
|
|
es_document_store.client = mock_client
|
|
auth_headers = {"Authorization": "Basic YWRtaW46cm9vdA=="}
|
|
pipeline = DocumentSearchPipeline(retriever=retriever_with_docs)
|
|
if not mock_client:
|
|
with pytest.raises(Exception):
|
|
prediction = pipeline.run(
|
|
query="Who lives in Berlin?",
|
|
params={"Retriever": {"top_k": 10, "headers": auth_headers}},
|
|
)
|
|
else:
|
|
prediction = pipeline.run(
|
|
query="Who lives in Berlin?",
|
|
params={"Retriever": {"top_k": 10, "headers": auth_headers}},
|
|
)
|
|
assert prediction is not None
|
|
assert len(prediction["documents"]) == 5
|
|
mock_client.count.assert_called_once()
|
|
args, kwargs = mock_client.count.call_args
|
|
assert "headers" in kwargs
|
|
assert kwargs["headers"] == auth_headers
|
|
|
|
|
|
def test_route_documents_by_content_type():
|
|
# Test routing by content_type
|
|
docs = [
|
|
Document(content="text document", content_type="text"),
|
|
Document(
|
|
content=pd.DataFrame(columns=["col 1", "col 2"], data=[["row 1", "row 1"], ["row 2", "row 2"]]),
|
|
content_type="table",
|
|
),
|
|
]
|
|
|
|
route_documents = RouteDocuments()
|
|
result, _ = route_documents.run(documents=docs)
|
|
assert len(result["output_1"]) == 1
|
|
assert len(result["output_2"]) == 1
|
|
assert result["output_1"][0].content_type == "text"
|
|
assert result["output_2"][0].content_type == "table"
|
|
|
|
|
|
def test_route_documents_by_metafield(test_docs_xs):
|
|
# Test routing by metadata field
|
|
docs = [Document.from_dict(doc) if isinstance(doc, dict) else doc for doc in test_docs_xs]
|
|
route_documents = RouteDocuments(split_by="meta_field", metadata_values=["test1", "test3", "test5"])
|
|
result, _ = route_documents.run(docs)
|
|
assert len(result["output_1"]) == 1
|
|
assert len(result["output_2"]) == 1
|
|
assert len(result["output_3"]) == 1
|
|
assert result["output_1"][0].meta["meta_field"] == "test1"
|
|
assert result["output_2"][0].meta["meta_field"] == "test3"
|
|
assert result["output_3"][0].meta["meta_field"] == "test5"
|
|
|
|
|
|
@pytest.mark.parametrize("join_mode", ["concatenate", "merge"])
|
|
def test_join_answers(join_mode):
|
|
inputs = [{"answers": [Answer(answer="answer 1", score=0.7)]}, {"answers": [Answer(answer="answer 2", score=0.8)]}]
|
|
|
|
join_answers = JoinAnswers(join_mode=join_mode)
|
|
result, _ = join_answers.run(inputs)
|
|
assert len(result["answers"]) == 2
|
|
assert result["answers"] == sorted(result["answers"], reverse=True)
|
|
|
|
result, _ = join_answers.run(inputs, top_k_join=1)
|
|
assert len(result["answers"]) == 1
|
|
assert result["answers"][0].answer == "answer 2"
|
|
|
|
|
|
def clean_faiss_document_store():
|
|
if Path("existing_faiss_document_store").exists():
|
|
os.remove("existing_faiss_document_store")
|
|
if Path("existing_faiss_document_store.json").exists():
|
|
os.remove("existing_faiss_document_store.json")
|
|
if Path("faiss_document_store.db").exists():
|
|
os.remove("faiss_document_store.db")
|