Sara Zan 13510aa753
Refactoring of the haystack package (#1624)
* Files moved, imports all broken

* Fix most imports and docstrings into

* Fix the paths to the modules in the API docs

* Add latest docstring and tutorial changes

* Add a few pipelines that were lost in the inports

* Fix a bunch of mypy warnings

* Add latest docstring and tutorial changes

* Create a file_classifier module

* Add docs for file_classifier

* Fixed most circular imports, now the REST API can start

* Add latest docstring and tutorial changes

* Tackling more mypy issues

* Reintroduce  from FARM and fix last mypy issues hopefully

* Re-enable old-style imports

* Fix some more import from the top-level  package in an attempt to sort out circular imports

* Fix some imports in tests to new-style to prevent failed class equalities from breaking tests

* Change document_store into document_stores

* Update imports in tutorials

* Add latest docstring and tutorial changes

* Probably fixes summarizer tests

* Improve the old-style import allowing module imports (should work)

* Try to fix the docs

* Remove dedicated KnowledgeGraph page from autodocs

* Remove dedicated GraphRetriever page from autodocs

* Fix generate_docstrings.sh with an updated list of yaml files to look for

* Fix some more modules in the docs

* Fix the document stores docs too

* Fix a small issue on Tutorial14

* Add latest docstring and tutorial changes

* Add deprecation warning to old-style imports

* Remove stray folder and import Dict into dense.py

* Change import path for MLFlowLogger

* Add old loggers path to the import path aliases

* Fix debug output of convert_ipynb.py

* Fix circular import on BaseRetriever

* Missed one merge block

* re-run tutorial 5

* Fix imports in tutorial 5

* Re-enable squad_to_dpr CLI from the root package and move get_batches_from_generator into document_stores.base

* Add latest docstring and tutorial changes

* Fix typo in utils __init__

* Fix a few more imports

* Fix benchmarks too

* New-style imports in test_knowledge_graph

* Rollback setup.py

* Rollback squad_to_dpr too

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-25 15:50:23 +02:00

72 lines
2.3 KiB
Python

import logging
import time
from pathlib import Path
from fastapi import APIRouter
from haystack.pipelines.base import Pipeline
from rest_api.config import PIPELINE_YAML_PATH, QUERY_PIPELINE_NAME
from rest_api.config import LOG_LEVEL, CONCURRENT_REQUEST_PER_WORKER
from rest_api.schema import QueryRequest, QueryResponse
from rest_api.controller.utils import RequestLimiter
logging.getLogger("haystack").setLevel(LOG_LEVEL)
logger = logging.getLogger("haystack")
from pydantic import BaseConfig
BaseConfig.arbitrary_types_allowed = True
router = APIRouter()
PIPELINE = Pipeline.load_from_yaml(Path(PIPELINE_YAML_PATH), pipeline_name=QUERY_PIPELINE_NAME)
# TODO make this generic for other pipelines with different naming
RETRIEVER = PIPELINE.get_node(name="Retriever")
DOCUMENT_STORE = RETRIEVER.document_store if RETRIEVER else None
logging.info(f"Loaded pipeline nodes: {PIPELINE.graph.nodes.keys()}")
concurrency_limiter = RequestLimiter(CONCURRENT_REQUEST_PER_WORKER)
@router.get("/initialized")
def initialized():
"""
This endpoint can be used during startup to understand if the
server is ready to take any requests, or is still loading.
The recommended approach is to call this endpoint with a short timeout,
like 500ms, and in case of no reply, consider the server busy.
"""
return True
@router.post("/query", response_model=QueryResponse)
def query(request: QueryRequest):
with concurrency_limiter.run():
result = _process_request(PIPELINE, request)
return result
def _process_request(pipeline, request) -> QueryResponse:
start_time = time.time()
params = request.params or {}
params["Retriever"] = params.get("Retriever", {})
filters = {}
if "filters" in params["Retriever"]: # put filter values into a list and remove filters with null value
for key, values in params["Retriever"]["filters"].items():
if values is None:
continue
if not isinstance(values, list):
values = [values]
filters[key] = values
params["Retriever"]["filters"] = filters
result = pipeline.run(query=request.query, params=params)
end_time = time.time()
logger.info({"request": request.dict(), "response": result, "time": f"{(end_time - start_time):.2f}"})
return result