haystack/test/components/embedders/test_openai_document_embedder.py
Sebastian Husch Lee ce0917e586
feat: Add raise_on_failure boolean parameter to OpenAIDocumentEmbedder and AzureOpenAIDocumentEmbedder (#9474)
* Add raise_on_failure to OpenAIDocumentEmbedder

* Add reno

* Add parameter to Azure Doc embedder as well

* Fix bug

* Update reno

* PR comments

* update reno
2025-06-03 10:22:34 +00:00

340 lines
14 KiB
Python

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
import os
import random
from typing import List
from unittest.mock import Mock, patch
import pytest
from openai import APIError
from haystack import Document
from haystack.components.embedders.openai_document_embedder import OpenAIDocumentEmbedder
from haystack.utils.auth import Secret
def mock_openai_response(input: List[str], model: str = "text-embedding-ada-002", **kwargs) -> dict:
dict_response = {
"object": "list",
"data": [
{"object": "embedding", "index": i, "embedding": [random.random() for _ in range(1536)]}
for i in range(len(input))
],
"model": model,
"usage": {"prompt_tokens": 4, "total_tokens": 4},
}
return dict_response
class TestOpenAIDocumentEmbedder:
def test_init_default(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "fake-api-key")
embedder = OpenAIDocumentEmbedder()
assert embedder.api_key.resolve_value() == "fake-api-key"
assert embedder.model == "text-embedding-ada-002"
assert embedder.organization is None
assert embedder.prefix == ""
assert embedder.suffix == ""
assert embedder.batch_size == 32
assert embedder.progress_bar is True
assert embedder.meta_fields_to_embed == []
assert embedder.embedding_separator == "\n"
assert embedder.client.max_retries == 5
assert embedder.client.timeout == 30.0
def test_init_with_parameters(self, monkeypatch):
monkeypatch.setenv("OPENAI_TIMEOUT", "100")
monkeypatch.setenv("OPENAI_MAX_RETRIES", "10")
embedder = OpenAIDocumentEmbedder(
api_key=Secret.from_token("fake-api-key-2"),
model="model",
organization="my-org",
prefix="prefix",
suffix="suffix",
batch_size=64,
progress_bar=False,
meta_fields_to_embed=["test_field"],
embedding_separator=" | ",
timeout=40.0,
max_retries=1,
)
assert embedder.api_key.resolve_value() == "fake-api-key-2"
assert embedder.organization == "my-org"
assert embedder.model == "model"
assert embedder.prefix == "prefix"
assert embedder.suffix == "suffix"
assert embedder.batch_size == 64
assert embedder.progress_bar is False
assert embedder.meta_fields_to_embed == ["test_field"]
assert embedder.embedding_separator == " | "
assert embedder.client.max_retries == 1
assert embedder.client.timeout == 40.0
def test_init_with_parameters_and_env_vars(self, monkeypatch):
monkeypatch.setenv("OPENAI_TIMEOUT", "100")
monkeypatch.setenv("OPENAI_MAX_RETRIES", "10")
embedder = OpenAIDocumentEmbedder(
api_key=Secret.from_token("fake-api-key-2"),
model="model",
organization="my-org",
prefix="prefix",
suffix="suffix",
batch_size=64,
progress_bar=False,
meta_fields_to_embed=["test_field"],
embedding_separator=" | ",
)
assert embedder.api_key.resolve_value() == "fake-api-key-2"
assert embedder.organization == "my-org"
assert embedder.model == "model"
assert embedder.prefix == "prefix"
assert embedder.suffix == "suffix"
assert embedder.batch_size == 64
assert embedder.progress_bar is False
assert embedder.meta_fields_to_embed == ["test_field"]
assert embedder.embedding_separator == " | "
assert embedder.client.max_retries == 10
assert embedder.client.timeout == 100.0
def test_init_fail_wo_api_key(self, monkeypatch):
monkeypatch.delenv("OPENAI_API_KEY", raising=False)
with pytest.raises(ValueError, match="None of the .* environment variables are set"):
OpenAIDocumentEmbedder()
def test_to_dict(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "fake-api-key")
component = OpenAIDocumentEmbedder()
data = component.to_dict()
assert data == {
"type": "haystack.components.embedders.openai_document_embedder.OpenAIDocumentEmbedder",
"init_parameters": {
"api_key": {"env_vars": ["OPENAI_API_KEY"], "strict": True, "type": "env_var"},
"api_base_url": None,
"model": "text-embedding-ada-002",
"dimensions": None,
"organization": None,
"http_client_kwargs": None,
"prefix": "",
"suffix": "",
"batch_size": 32,
"progress_bar": True,
"meta_fields_to_embed": [],
"embedding_separator": "\n",
"timeout": None,
"max_retries": None,
"raise_on_failure": False,
},
}
def test_to_dict_with_custom_init_parameters(self, monkeypatch):
monkeypatch.setenv("ENV_VAR", "fake-api-key")
component = OpenAIDocumentEmbedder(
api_key=Secret.from_env_var("ENV_VAR", strict=False),
model="model",
organization="my-org",
http_client_kwargs={"proxy": "http://localhost:8080"},
prefix="prefix",
suffix="suffix",
batch_size=64,
progress_bar=False,
meta_fields_to_embed=["test_field"],
embedding_separator=" | ",
timeout=10.0,
max_retries=2,
raise_on_failure=True,
)
data = component.to_dict()
assert data == {
"type": "haystack.components.embedders.openai_document_embedder.OpenAIDocumentEmbedder",
"init_parameters": {
"api_key": {"env_vars": ["ENV_VAR"], "strict": False, "type": "env_var"},
"api_base_url": None,
"model": "model",
"dimensions": None,
"organization": "my-org",
"http_client_kwargs": {"proxy": "http://localhost:8080"},
"prefix": "prefix",
"suffix": "suffix",
"batch_size": 64,
"progress_bar": False,
"meta_fields_to_embed": ["test_field"],
"embedding_separator": " | ",
"timeout": 10.0,
"max_retries": 2,
"raise_on_failure": True,
},
}
def test_prepare_texts_to_embed_w_metadata(self):
documents = [
Document(id=f"{i}", content=f"document number {i}:\ncontent", meta={"meta_field": f"meta_value {i}"})
for i in range(5)
]
embedder = OpenAIDocumentEmbedder(
api_key=Secret.from_token("fake-api-key"), meta_fields_to_embed=["meta_field"], embedding_separator=" | "
)
prepared_texts = embedder._prepare_texts_to_embed(documents)
assert prepared_texts == {
"0": "meta_value 0 | document number 0:\ncontent",
"1": "meta_value 1 | document number 1:\ncontent",
"2": "meta_value 2 | document number 2:\ncontent",
"3": "meta_value 3 | document number 3:\ncontent",
"4": "meta_value 4 | document number 4:\ncontent",
}
def test_prepare_texts_to_embed_w_suffix(self):
documents = [Document(id=f"{i}", content=f"document number {i}") for i in range(5)]
embedder = OpenAIDocumentEmbedder(
api_key=Secret.from_token("fake-api-key"), prefix="my_prefix ", suffix=" my_suffix"
)
prepared_texts = embedder._prepare_texts_to_embed(documents)
assert prepared_texts == {
"0": "my_prefix document number 0 my_suffix",
"1": "my_prefix document number 1 my_suffix",
"2": "my_prefix document number 2 my_suffix",
"3": "my_prefix document number 3 my_suffix",
"4": "my_prefix document number 4 my_suffix",
}
def test_run_wrong_input_format(self):
embedder = OpenAIDocumentEmbedder(api_key=Secret.from_token("fake-api-key"))
# wrong formats
string_input = "text"
list_integers_input = [1, 2, 3]
with pytest.raises(TypeError, match="OpenAIDocumentEmbedder expects a list of Documents as input"):
embedder.run(documents=string_input)
with pytest.raises(TypeError, match="OpenAIDocumentEmbedder expects a list of Documents as input"):
embedder.run(documents=list_integers_input)
def test_run_on_empty_list(self):
embedder = OpenAIDocumentEmbedder(api_key=Secret.from_token("fake-api-key"))
empty_list_input = []
result = embedder.run(documents=empty_list_input)
assert result["documents"] is not None
assert not result["documents"] # empty list
def test_embed_batch_handles_exceptions_gracefully(self, caplog):
embedder = OpenAIDocumentEmbedder(api_key=Secret.from_token("fake_api_key"))
fake_texts_to_embed = {"1": "text1", "2": "text2"}
with patch.object(
embedder.client.embeddings,
"create",
side_effect=APIError(message="Mocked error", request=Mock(), body=None),
):
embedder._embed_batch(texts_to_embed=fake_texts_to_embed, batch_size=2)
assert len(caplog.records) == 1
assert "Failed embedding of documents 1, 2 caused by Mocked error" in caplog.records[0].msg
def test_run_handles_exceptions_gracefully(self, caplog):
embedder = OpenAIDocumentEmbedder(api_key=Secret.from_token("fake_api_key"), batch_size=1)
docs = [
Document(content="I love cheese", meta={"topic": "Cuisine"}),
Document(content="A transformer is a deep learning architecture", meta={"topic": "ML"}),
]
# Create a successful response for the second call
successful_response = Mock()
successful_response.data = [
Mock(embedding=[0.4, 0.5, 0.6]) # Mock embedding for second doc
]
successful_response.model = "text-embedding-ada-002"
successful_response.usage = {"prompt_tokens": 10, "total_tokens": 10}
with patch.object(
embedder.client.embeddings,
"create",
side_effect=[
APIError(message="Mocked error", request=Mock(), body=None), # First call fails
successful_response, # Second call succeeds
],
):
result = embedder.run(documents=docs)
assert len(result["documents"]) == 2
assert result["documents"][0].embedding is None
assert result["documents"][1].embedding == [0.4, 0.5, 0.6]
def test_embed_batch_raises_exception_on_failure(self):
embedder = OpenAIDocumentEmbedder(api_key=Secret.from_token("fake_api_key"), raise_on_failure=True)
fake_texts_to_embed = {"1": "text1", "2": "text2"}
with patch.object(
embedder.client.embeddings,
"create",
side_effect=APIError(message="Mocked error", request=Mock(), body=None),
):
with pytest.raises(APIError, match="Mocked error"):
embedder._embed_batch(texts_to_embed=fake_texts_to_embed, batch_size=2)
@pytest.mark.skipif(os.environ.get("OPENAI_API_KEY", "") == "", reason="OPENAI_API_KEY is not set")
@pytest.mark.integration
def test_run(self):
docs = [
Document(content="I love cheese", meta={"topic": "Cuisine"}),
Document(content="A transformer is a deep learning architecture", meta={"topic": "ML"}),
]
model = "text-embedding-ada-002"
embedder = OpenAIDocumentEmbedder(model=model, meta_fields_to_embed=["topic"], embedding_separator=" | ")
result = embedder.run(documents=docs)
documents_with_embeddings = result["documents"]
assert isinstance(documents_with_embeddings, list)
assert len(documents_with_embeddings) == len(docs)
for doc in documents_with_embeddings:
assert isinstance(doc, Document)
assert isinstance(doc.embedding, list)
assert len(doc.embedding) == 1536
assert all(isinstance(x, float) for x in doc.embedding)
assert "text" in result["meta"]["model"] and "ada" in result["meta"]["model"], (
"The model name does not contain 'text' and 'ada'"
)
assert result["meta"]["usage"] == {"prompt_tokens": 15, "total_tokens": 15}, "Usage information does not match"
@pytest.mark.skipif(os.environ.get("OPENAI_API_KEY", "") == "", reason="OPENAI_API_KEY is not set")
@pytest.mark.integration
@pytest.mark.asyncio
async def test_run_async(self):
docs = [
Document(content="I love cheese", meta={"topic": "Cuisine"}),
Document(content="A transformer is a deep learning architecture", meta={"topic": "ML"}),
]
model = "text-embedding-ada-002"
embedder = OpenAIDocumentEmbedder(model=model, meta_fields_to_embed=["topic"], embedding_separator=" | ")
result = await embedder.run_async(documents=docs)
documents_with_embeddings = result["documents"]
assert isinstance(documents_with_embeddings, list)
assert len(documents_with_embeddings) == len(docs)
for doc in documents_with_embeddings:
assert isinstance(doc, Document)
assert isinstance(doc.embedding, list)
assert len(doc.embedding) == 1536
assert all(isinstance(x, float) for x in doc.embedding)
assert "text" in result["meta"]["model"] and "ada" in result["meta"]["model"], (
"The model name does not contain 'text' and 'ada'"
)
assert result["meta"]["usage"] == {"prompt_tokens": 15, "total_tokens": 15}, "Usage information does not match"