haystack/test/components/embedders/test_sentence_transformers_embedding_backend.py
Swapnil Gusani 2ecddff284
feat: add revision parameter to Sentence Transformers embedder components (#10003)
* Add revision argument to sentence transformer components

* Use revision as last argument in sentence transformer
Add release notes
2025-11-05 09:03:46 +00:00

67 lines
2.5 KiB
Python

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
from unittest.mock import patch
from haystack.components.embedders.backends.sentence_transformers_backend import (
_SentenceTransformersEmbeddingBackendFactory,
)
from haystack.utils.auth import Secret
@patch("haystack.components.embedders.backends.sentence_transformers_backend.SentenceTransformer")
def test_factory_behavior(mock_sentence_transformer):
embedding_backend = _SentenceTransformersEmbeddingBackendFactory.get_embedding_backend(
model="my_model", device="cpu"
)
same_embedding_backend = _SentenceTransformersEmbeddingBackendFactory.get_embedding_backend(
model="my_model", device="cpu"
)
another_embedding_backend = _SentenceTransformersEmbeddingBackendFactory.get_embedding_backend(
model="another_model", device="cpu"
)
yet_another_embedding_backend = _SentenceTransformersEmbeddingBackendFactory.get_embedding_backend(
model="my_model", device="cpu", trust_remote_code=True
)
assert same_embedding_backend is embedding_backend
assert another_embedding_backend is not embedding_backend
assert yet_another_embedding_backend is not embedding_backend
@patch("haystack.components.embedders.backends.sentence_transformers_backend.SentenceTransformer")
def test_model_initialization(mock_sentence_transformer):
_SentenceTransformersEmbeddingBackendFactory.get_embedding_backend(
model="model",
device="cpu",
auth_token=Secret.from_token("fake-api-token"),
trust_remote_code=True,
local_files_only=True,
truncate_dim=256,
backend="torch",
)
mock_sentence_transformer.assert_called_once_with(
model_name_or_path="model",
device="cpu",
token="fake-api-token",
trust_remote_code=True,
revision=None,
local_files_only=True,
truncate_dim=256,
model_kwargs=None,
tokenizer_kwargs=None,
config_kwargs=None,
backend="torch",
)
@patch("haystack.components.embedders.backends.sentence_transformers_backend.SentenceTransformer")
def test_embedding_function_with_kwargs(mock_sentence_transformer):
embedding_backend = _SentenceTransformersEmbeddingBackendFactory.get_embedding_backend(model="model")
data = ["sentence1", "sentence2"]
embedding_backend.embed(data=data, normalize_embeddings=True)
embedding_backend.model.encode.assert_called_once_with(data, normalize_embeddings=True)