mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-12-12 07:17:41 +00:00
* feat(converters): CSVToDocument row-level conversion (content_column, columns→meta) + tests + releasenote Signed-off-by: Arya Tayshete <avtayshete_b21@et.vjti.ac.in> * feat(converters): CSVToDocument row-mode hardening + tests Signed-off-by: Arya Tayshete <avtayshete_b21@et.vjti.ac.in> * test(converters): remove long commented line to satisfy ruff E501 Signed-off-by: Arya Tayshete <avtayshete_b21@et.vjti.ac.in> * fix(converters): avoid infinite loop Signed-off-by: Arya Tayshete <avtayshete_b21@et.vjti.ac.in> * feat(converters): require content_column in run() for row mode; remove fallbacks; improve docstrings; update tests Signed-off-by: Arya Tayshete <avtayshete_b21@et.vjti.ac.in> * feat(converters): content_column required in run method instead of init Signed-off-by: Arya Tayshete <avtayshete_b21@et.vjti.ac.in> * feat(csv): row-mode with required run() arg ; update BDD pipeline tests --------- Signed-off-by: Arya Tayshete <avtayshete_b21@et.vjti.ac.in>
222 lines
9.1 KiB
Python
222 lines
9.1 KiB
Python
# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
|
|
#
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import logging
|
|
import os
|
|
|
|
import pytest
|
|
|
|
from haystack.components.converters.csv import CSVToDocument
|
|
from haystack.dataclasses import ByteStream
|
|
|
|
|
|
@pytest.fixture
|
|
def csv_converter():
|
|
return CSVToDocument()
|
|
|
|
|
|
class TestCSVToDocument:
|
|
def test_init(self, csv_converter):
|
|
assert isinstance(csv_converter, CSVToDocument)
|
|
|
|
def test_run(self, test_files_path):
|
|
"""
|
|
Test if the component runs correctly.
|
|
"""
|
|
bytestream = ByteStream.from_file_path(test_files_path / "csv" / "sample_1.csv")
|
|
bytestream.meta["file_path"] = str(test_files_path / "csv" / "sample_1.csv")
|
|
bytestream.meta["key"] = "value"
|
|
files = [bytestream, test_files_path / "csv" / "sample_2.csv", test_files_path / "csv" / "sample_3.csv"]
|
|
converter = CSVToDocument()
|
|
output = converter.run(sources=files)
|
|
docs = output["documents"]
|
|
assert len(docs) == 3
|
|
assert docs[0].content == "Name,Age\r\nJohn Doe,27\r\nJane Smith,37\r\nMike Johnson,47\r\n"
|
|
assert isinstance(docs[0].content, str)
|
|
assert docs[0].meta == {"file_path": os.path.basename(bytestream.meta["file_path"]), "key": "value"}
|
|
assert docs[1].meta["file_path"] == os.path.basename(files[1])
|
|
assert docs[2].meta["file_path"] == os.path.basename(files[2])
|
|
|
|
def test_run_with_store_full_path_false(self, test_files_path):
|
|
"""
|
|
Test if the component runs correctly with store_full_path=False
|
|
"""
|
|
bytestream = ByteStream.from_file_path(test_files_path / "csv" / "sample_1.csv")
|
|
bytestream.meta["file_path"] = str(test_files_path / "csv" / "sample_1.csv")
|
|
bytestream.meta["key"] = "value"
|
|
files = [bytestream, test_files_path / "csv" / "sample_2.csv", test_files_path / "csv" / "sample_3.csv"]
|
|
converter = CSVToDocument(store_full_path=False)
|
|
output = converter.run(sources=files)
|
|
docs = output["documents"]
|
|
assert len(docs) == 3
|
|
assert docs[0].content == "Name,Age\r\nJohn Doe,27\r\nJane Smith,37\r\nMike Johnson,47\r\n"
|
|
assert isinstance(docs[0].content, str)
|
|
assert docs[0].meta["file_path"] == "sample_1.csv"
|
|
assert docs[0].meta["key"] == "value"
|
|
assert docs[1].meta["file_path"] == "sample_2.csv"
|
|
assert docs[2].meta["file_path"] == "sample_3.csv"
|
|
|
|
def test_run_error_handling(self, test_files_path, caplog):
|
|
"""
|
|
Test if the component correctly handles errors.
|
|
"""
|
|
paths = [
|
|
test_files_path / "csv" / "sample_2.csv",
|
|
"non_existing_file.csv",
|
|
test_files_path / "csv" / "sample_3.csv",
|
|
]
|
|
converter = CSVToDocument()
|
|
with caplog.at_level(logging.WARNING):
|
|
output = converter.run(sources=paths)
|
|
assert "non_existing_file.csv" in caplog.text
|
|
docs = output["documents"]
|
|
assert len(docs) == 2
|
|
assert docs[0].meta["file_path"] == os.path.basename(paths[0])
|
|
|
|
def test_encoding_override(self, test_files_path, caplog):
|
|
"""
|
|
Test if the encoding metadata field is used properly
|
|
"""
|
|
bytestream = ByteStream.from_file_path(test_files_path / "csv" / "sample_1.csv")
|
|
bytestream.meta["key"] = "value"
|
|
|
|
converter = CSVToDocument(encoding="utf-16-le")
|
|
_ = converter.run(sources=[bytestream])
|
|
with caplog.at_level(logging.ERROR):
|
|
_ = converter.run(sources=[bytestream])
|
|
assert "codec can't decode" in caplog.text
|
|
|
|
converter = CSVToDocument(encoding="utf-8")
|
|
output = converter.run(sources=[bytestream])
|
|
assert "Name,Age\r\n" in output["documents"][0].content
|
|
|
|
def test_run_with_meta(self):
|
|
bytestream = ByteStream(
|
|
data=b"Name,Age,City\r\nAlice,30,New York\r\nBob,25,Los Angeles\r\nCharlie,35,Chicago\r\n",
|
|
meta={"name": "test_name", "language": "en"},
|
|
)
|
|
converter = CSVToDocument()
|
|
output = converter.run(sources=[bytestream], meta=[{"language": "it"}])
|
|
document = output["documents"][0]
|
|
assert document.meta == {"name": "test_name", "language": "it"}
|
|
|
|
# --- NEW TESTS for strict row mode ---
|
|
|
|
def test_row_mode_requires_content_column_param(self, tmp_path):
|
|
# Missing content_column must raise in row mode
|
|
f = tmp_path / "t.csv"
|
|
f.write_text("a,b\r\n1,2\r\n", encoding="utf-8")
|
|
conv = CSVToDocument(conversion_mode="row")
|
|
with pytest.raises(ValueError):
|
|
_ = conv.run(sources=[f]) # content_column missing
|
|
|
|
def test_row_mode_missing_header_raises(self, tmp_path):
|
|
# content_column must exist in header
|
|
f = tmp_path / "t.csv"
|
|
f.write_text("a,b\r\n1,2\r\n", encoding="utf-8")
|
|
conv = CSVToDocument(conversion_mode="row")
|
|
with pytest.raises(ValueError):
|
|
_ = conv.run(sources=[f], content_column="missing")
|
|
|
|
def test_row_mode_with_content_column(self, tmp_path):
|
|
csv_text = "text,author,stars\r\nNice app,Ada,5\r\nBuggy,Bob,2\r\n"
|
|
f = tmp_path / "fb.csv"
|
|
f.write_text(csv_text, encoding="utf-8")
|
|
|
|
bytestream = ByteStream.from_file_path(f)
|
|
bytestream.meta["file_path"] = str(f)
|
|
|
|
converter = CSVToDocument(conversion_mode="row")
|
|
output = converter.run(sources=[bytestream], content_column="text")
|
|
docs = output["documents"]
|
|
|
|
assert len(docs) == 2
|
|
assert [d.content for d in docs] == ["Nice app", "Buggy"]
|
|
assert docs[0].meta["author"] == "Ada"
|
|
assert docs[0].meta["stars"] == "5"
|
|
assert docs[0].meta["row_number"] == 0
|
|
assert os.path.basename(f) == docs[0].meta["file_path"]
|
|
|
|
def test_row_mode_meta_collision_prefixed(self, tmp_path):
|
|
# ByteStream meta has file_path and encoding; CSV also has those columns.
|
|
csv_text = "file_path,encoding,comment\r\nrowpath.csv,latin1,ok\r\n"
|
|
f = tmp_path / "collide.csv"
|
|
f.write_text(csv_text, encoding="utf-8")
|
|
bs = ByteStream.from_file_path(f)
|
|
bs.meta["file_path"] = str(f)
|
|
bs.meta["encoding"] = "utf-8"
|
|
|
|
conv = CSVToDocument(conversion_mode="row")
|
|
out = conv.run(sources=[bs], content_column="comment")
|
|
d = out["documents"][0]
|
|
# Original meta preserved
|
|
assert d.meta["file_path"] == os.path.basename(str(f))
|
|
assert d.meta["encoding"] == "utf-8"
|
|
# CSV columns stored with csv_ prefix (no clobber)
|
|
assert d.meta["csv_file_path"] == "rowpath.csv"
|
|
assert d.meta["csv_encoding"] == "latin1"
|
|
# content column isn't duplicated in meta
|
|
assert "comment" not in d.meta
|
|
assert d.meta["row_number"] == 0
|
|
assert d.content == "ok"
|
|
|
|
def test_row_mode_meta_collision_multiple_suffixes(self, tmp_path):
|
|
"""
|
|
If meta already has csv_file_path and csv_file_path_1, we should write the next as csv_file_path_2.
|
|
"""
|
|
csv_text = "file_path,comment\r\nrow.csv,ok\r\n"
|
|
f = tmp_path / "multi.csv"
|
|
f.write_text(csv_text, encoding="utf-8")
|
|
|
|
bs = ByteStream.from_file_path(f)
|
|
bs.meta["file_path"] = str(f)
|
|
|
|
# Pre-seed meta so we force two collisions.
|
|
extra_meta = {"csv_file_path": "existing0", "csv_file_path_1": "existing1"}
|
|
|
|
conv = CSVToDocument(conversion_mode="row")
|
|
out = conv.run(sources=[bs], meta=[extra_meta], content_column="comment")
|
|
d = out["documents"][0]
|
|
|
|
assert d.meta["csv_file_path"] == "existing0"
|
|
assert d.meta["csv_file_path_1"] == "existing1"
|
|
assert d.meta["csv_file_path_2"] == "row.csv"
|
|
assert d.content == "ok"
|
|
|
|
def test_init_validates_delimiter_and_quotechar(self):
|
|
with pytest.raises(ValueError):
|
|
CSVToDocument(delimiter=";;")
|
|
with pytest.raises(ValueError):
|
|
CSVToDocument(quotechar='""')
|
|
|
|
def test_row_mode_large_file_warns(self, caplog, monkeypatch):
|
|
# Make the threshold tiny so the warning always triggers.
|
|
import haystack.components.converters.csv as csv_mod
|
|
|
|
monkeypatch.setattr(csv_mod, "_ROW_MODE_SIZE_WARN_BYTES", 1, raising=False)
|
|
|
|
bs = ByteStream(data=b"text,author\nhi,Ada\n", meta={"file_path": "big.csv"})
|
|
conv = CSVToDocument(conversion_mode="row")
|
|
with caplog.at_level(logging.WARNING, logger="haystack.components.converters.csv"):
|
|
_ = conv.run(sources=[bs], content_column="text")
|
|
assert "parsing a large CSV" in caplog.text
|
|
|
|
def test_row_mode_reader_failure_raises_runtimeerror(self, monkeypatch, tmp_path):
|
|
# Simulate DictReader failing -> we should raise RuntimeError (no fallback).
|
|
import haystack.components.converters.csv as csv_mod
|
|
|
|
f = tmp_path / "bad.csv"
|
|
f.write_text("a,b\n1,2\n", encoding="utf-8")
|
|
conv = CSVToDocument(conversion_mode="row")
|
|
|
|
class Boom(Exception):
|
|
pass
|
|
|
|
def broken_reader(*_args, **_kwargs): # noqa: D401
|
|
raise Boom("broken")
|
|
|
|
monkeypatch.setattr(csv_mod.csv, "DictReader", broken_reader, raising=True)
|
|
with pytest.raises(RuntimeError):
|
|
_ = conv.run(sources=[f], content_column="a")
|